xref: /freebsd/lib/msun/src/s_fma.c (revision 39beb93c3f8bdbf72a61fda42300b5ebed7390c8)
1 /*-
2  * Copyright (c) 2005 David Schultz <das@FreeBSD.ORG>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include <fenv.h>
31 #include <float.h>
32 #include <math.h>
33 
34 /*
35  * Fused multiply-add: Compute x * y + z with a single rounding error.
36  *
37  * We use scaling to avoid overflow/underflow, along with the
38  * canonical precision-doubling technique adapted from:
39  *
40  *	Dekker, T.  A Floating-Point Technique for Extending the
41  *	Available Precision.  Numer. Math. 18, 224-242 (1971).
42  *
43  * This algorithm is sensitive to the rounding precision.  FPUs such
44  * as the i387 must be set in double-precision mode if variables are
45  * to be stored in FP registers in order to avoid incorrect results.
46  * This is the default on FreeBSD, but not on many other systems.
47  *
48  * Hardware instructions should be used on architectures that support it,
49  * since this implementation will likely be several times slower.
50  */
51 #if LDBL_MANT_DIG != 113
52 double
53 fma(double x, double y, double z)
54 {
55 	static const double split = 0x1p27 + 1.0;
56 	double xs, ys, zs;
57 	double c, cc, hx, hy, p, q, tx, ty;
58 	double r, rr, s;
59 	int oround;
60 	int ex, ey, ez;
61 	int spread;
62 
63 	/*
64 	 * Handle special cases. The order of operations and the particular
65 	 * return values here are crucial in handling special cases involving
66 	 * infinities, NaNs, overflows, and signed zeroes correctly.
67 	 */
68 	if (x == 0.0 || y == 0.0)
69 		return (x * y + z);
70 	if (z == 0.0)
71 		return (x * y);
72 	if (!isfinite(x) || !isfinite(y))
73 		return (x * y + z);
74 	if (!isfinite(z))
75 		return (z);
76 
77 	xs = frexp(x, &ex);
78 	ys = frexp(y, &ey);
79 	zs = frexp(z, &ez);
80 	oround = fegetround();
81 	spread = ex + ey - ez;
82 
83 	/*
84 	 * If x * y and z are many orders of magnitude apart, the scaling
85 	 * will overflow, so we handle these cases specially.  Rounding
86 	 * modes other than FE_TONEAREST are painful.
87 	 */
88 	if (spread > DBL_MANT_DIG * 2) {
89 		fenv_t env;
90 		feraiseexcept(FE_INEXACT);
91 		switch(oround) {
92 		case FE_TONEAREST:
93 			return (x * y);
94 		case FE_TOWARDZERO:
95 			if (x > 0.0 ^ y < 0.0 ^ z < 0.0)
96 				return (x * y);
97 			feholdexcept(&env);
98 			r = x * y;
99 			if (!fetestexcept(FE_INEXACT))
100 				r = nextafter(r, 0);
101 			feupdateenv(&env);
102 			return (r);
103 		case FE_DOWNWARD:
104 			if (z > 0.0)
105 				return (x * y);
106 			feholdexcept(&env);
107 			r = x * y;
108 			if (!fetestexcept(FE_INEXACT))
109 				r = nextafter(r, -INFINITY);
110 			feupdateenv(&env);
111 			return (r);
112 		default:	/* FE_UPWARD */
113 			if (z < 0.0)
114 				return (x * y);
115 			feholdexcept(&env);
116 			r = x * y;
117 			if (!fetestexcept(FE_INEXACT))
118 				r = nextafter(r, INFINITY);
119 			feupdateenv(&env);
120 			return (r);
121 		}
122 	}
123 	if (spread < -DBL_MANT_DIG) {
124 		feraiseexcept(FE_INEXACT);
125 		if (!isnormal(z))
126 			feraiseexcept(FE_UNDERFLOW);
127 		switch (oround) {
128 		case FE_TONEAREST:
129 			return (z);
130 		case FE_TOWARDZERO:
131 			if (x > 0.0 ^ y < 0.0 ^ z < 0.0)
132 				return (z);
133 			else
134 				return (nextafter(z, 0));
135 		case FE_DOWNWARD:
136 			if (x > 0.0 ^ y < 0.0)
137 				return (z);
138 			else
139 				return (nextafter(z, -INFINITY));
140 		default:	/* FE_UPWARD */
141 			if (x > 0.0 ^ y < 0.0)
142 				return (nextafter(z, INFINITY));
143 			else
144 				return (z);
145 		}
146 	}
147 
148 	/*
149 	 * Use Dekker's algorithm to perform the multiplication and
150 	 * subsequent addition in twice the machine precision.
151 	 * Arrange so that x * y = c + cc, and x * y + z = r + rr.
152 	 */
153 	fesetround(FE_TONEAREST);
154 
155 	p = xs * split;
156 	hx = xs - p;
157 	hx += p;
158 	tx = xs - hx;
159 
160 	p = ys * split;
161 	hy = ys - p;
162 	hy += p;
163 	ty = ys - hy;
164 
165 	p = hx * hy;
166 	q = hx * ty + tx * hy;
167 	c = p + q;
168 	cc = p - c + q + tx * ty;
169 
170 	zs = ldexp(zs, -spread);
171 	r = c + zs;
172 	s = r - c;
173 	rr = (c - (r - s)) + (zs - s) + cc;
174 
175 	spread = ex + ey;
176 	if (spread + ilogb(r) > -1023) {
177 		fesetround(oround);
178 		r = r + rr;
179 	} else {
180 		/*
181 		 * The result is subnormal, so we round before scaling to
182 		 * avoid double rounding.
183 		 */
184 		p = ldexp(copysign(0x1p-1022, r), -spread);
185 		c = r + p;
186 		s = c - r;
187 		cc = (r - (c - s)) + (p - s) + rr;
188 		fesetround(oround);
189 		r = (c + cc) - p;
190 	}
191 	return (ldexp(r, spread));
192 }
193 #else	/* LDBL_MANT_DIG == 113 */
194 /*
195  * 113 bits of precision is more than twice the precision of a double,
196  * so it is enough to represent the intermediate product exactly.
197  */
198 double
199 fma(double x, double y, double z)
200 {
201 	return ((long double)x * y + z);
202 }
203 #endif	/* LDBL_MANT_DIG != 113 */
204 
205 #if (LDBL_MANT_DIG == 53)
206 __weak_reference(fma, fmal);
207 #endif
208