xref: /freebsd/lib/msun/src/s_fma.c (revision 1fb62fb074788ca4713551be09d6569966a3abee)
1 /*-
2  * Copyright (c) 2005-2011 David Schultz <das@FreeBSD.ORG>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include <fenv.h>
31 #include <float.h>
32 #include <math.h>
33 
34 #include "math_private.h"
35 
36 /*
37  * A struct dd represents a floating-point number with twice the precision
38  * of a double.  We maintain the invariant that "hi" stores the 53 high-order
39  * bits of the result.
40  */
41 struct dd {
42 	double hi;
43 	double lo;
44 };
45 
46 /*
47  * Compute a+b exactly, returning the exact result in a struct dd.  We assume
48  * that both a and b are finite, but make no assumptions about their relative
49  * magnitudes.
50  */
51 static inline struct dd
52 dd_add(double a, double b)
53 {
54 	struct dd ret;
55 	double s;
56 
57 	ret.hi = a + b;
58 	s = ret.hi - a;
59 	ret.lo = (a - (ret.hi - s)) + (b - s);
60 	return (ret);
61 }
62 
63 /*
64  * Compute a+b, with a small tweak:  The least significant bit of the
65  * result is adjusted into a sticky bit summarizing all the bits that
66  * were lost to rounding.  This adjustment negates the effects of double
67  * rounding when the result is added to another number with a higher
68  * exponent.  For an explanation of round and sticky bits, see any reference
69  * on FPU design, e.g.,
70  *
71  *     J. Coonen.  An Implementation Guide to a Proposed Standard for
72  *     Floating-Point Arithmetic.  Computer, vol. 13, no. 1, Jan 1980.
73  */
74 static inline double
75 add_adjusted(double a, double b)
76 {
77 	struct dd sum;
78 	uint64_t hibits, lobits;
79 
80 	sum = dd_add(a, b);
81 	if (sum.lo != 0) {
82 		EXTRACT_WORD64(hibits, sum.hi);
83 		if ((hibits & 1) == 0) {
84 			/* hibits += (int)copysign(1.0, sum.hi * sum.lo) */
85 			EXTRACT_WORD64(lobits, sum.lo);
86 			hibits += 1 - ((hibits ^ lobits) >> 62);
87 			INSERT_WORD64(sum.hi, hibits);
88 		}
89 	}
90 	return (sum.hi);
91 }
92 
93 /*
94  * Compute ldexp(a+b, scale) with a single rounding error. It is assumed
95  * that the result will be subnormal, and care is taken to ensure that
96  * double rounding does not occur.
97  */
98 static inline double
99 add_and_denormalize(double a, double b, int scale)
100 {
101 	struct dd sum;
102 	uint64_t hibits, lobits;
103 	int bits_lost;
104 
105 	sum = dd_add(a, b);
106 
107 	/*
108 	 * If we are losing at least two bits of accuracy to denormalization,
109 	 * then the first lost bit becomes a round bit, and we adjust the
110 	 * lowest bit of sum.hi to make it a sticky bit summarizing all the
111 	 * bits in sum.lo. With the sticky bit adjusted, the hardware will
112 	 * break any ties in the correct direction.
113 	 *
114 	 * If we are losing only one bit to denormalization, however, we must
115 	 * break the ties manually.
116 	 */
117 	if (sum.lo != 0) {
118 		EXTRACT_WORD64(hibits, sum.hi);
119 		bits_lost = -((int)(hibits >> 52) & 0x7ff) - scale + 1;
120 		if ((bits_lost != 1) ^ (int)(hibits & 1)) {
121 			/* hibits += (int)copysign(1.0, sum.hi * sum.lo) */
122 			EXTRACT_WORD64(lobits, sum.lo);
123 			hibits += 1 - (((hibits ^ lobits) >> 62) & 2);
124 			INSERT_WORD64(sum.hi, hibits);
125 		}
126 	}
127 	return (ldexp(sum.hi, scale));
128 }
129 
130 /*
131  * Compute a*b exactly, returning the exact result in a struct dd.  We assume
132  * that both a and b are normalized, so no underflow or overflow will occur.
133  * The current rounding mode must be round-to-nearest.
134  */
135 static inline struct dd
136 dd_mul(double a, double b)
137 {
138 	static const double split = 0x1p27 + 1.0;
139 	struct dd ret;
140 	double ha, hb, la, lb, p, q;
141 
142 	p = a * split;
143 	ha = a - p;
144 	ha += p;
145 	la = a - ha;
146 
147 	p = b * split;
148 	hb = b - p;
149 	hb += p;
150 	lb = b - hb;
151 
152 	p = ha * hb;
153 	q = ha * lb + la * hb;
154 
155 	ret.hi = p + q;
156 	ret.lo = p - ret.hi + q + la * lb;
157 	return (ret);
158 }
159 
160 /*
161  * Fused multiply-add: Compute x * y + z with a single rounding error.
162  *
163  * We use scaling to avoid overflow/underflow, along with the
164  * canonical precision-doubling technique adapted from:
165  *
166  *	Dekker, T.  A Floating-Point Technique for Extending the
167  *	Available Precision.  Numer. Math. 18, 224-242 (1971).
168  *
169  * This algorithm is sensitive to the rounding precision.  FPUs such
170  * as the i387 must be set in double-precision mode if variables are
171  * to be stored in FP registers in order to avoid incorrect results.
172  * This is the default on FreeBSD, but not on many other systems.
173  *
174  * Hardware instructions should be used on architectures that support it,
175  * since this implementation will likely be several times slower.
176  */
177 double
178 fma(double x, double y, double z)
179 {
180 	double xs, ys, zs, adj;
181 	struct dd xy, r;
182 	int oround;
183 	int ex, ey, ez;
184 	int spread;
185 
186 	/*
187 	 * Handle special cases. The order of operations and the particular
188 	 * return values here are crucial in handling special cases involving
189 	 * infinities, NaNs, overflows, and signed zeroes correctly.
190 	 */
191 	if (x == 0.0 || y == 0.0)
192 		return (x * y + z);
193 	if (z == 0.0)
194 		return (x * y);
195 	if (!isfinite(x) || !isfinite(y))
196 		return (x * y + z);
197 	if (!isfinite(z))
198 		return (z);
199 
200 	xs = frexp(x, &ex);
201 	ys = frexp(y, &ey);
202 	zs = frexp(z, &ez);
203 	oround = fegetround();
204 	spread = ex + ey - ez;
205 
206 	/*
207 	 * If x * y and z are many orders of magnitude apart, the scaling
208 	 * will overflow, so we handle these cases specially.  Rounding
209 	 * modes other than FE_TONEAREST are painful.
210 	 */
211 	if (spread < -DBL_MANT_DIG) {
212 		feraiseexcept(FE_INEXACT);
213 		if (!isnormal(z))
214 			feraiseexcept(FE_UNDERFLOW);
215 		switch (oround) {
216 		case FE_TONEAREST:
217 			return (z);
218 		case FE_TOWARDZERO:
219 			if (x > 0.0 ^ y < 0.0 ^ z < 0.0)
220 				return (z);
221 			else
222 				return (nextafter(z, 0));
223 		case FE_DOWNWARD:
224 			if (x > 0.0 ^ y < 0.0)
225 				return (z);
226 			else
227 				return (nextafter(z, -INFINITY));
228 		default:	/* FE_UPWARD */
229 			if (x > 0.0 ^ y < 0.0)
230 				return (nextafter(z, INFINITY));
231 			else
232 				return (z);
233 		}
234 	}
235 	if (spread <= DBL_MANT_DIG * 2)
236 		zs = ldexp(zs, -spread);
237 	else
238 		zs = copysign(DBL_MIN, zs);
239 
240 	fesetround(FE_TONEAREST);
241 	/* work around clang bug 8100 */
242 	volatile double vxs = xs;
243 
244 	/*
245 	 * Basic approach for round-to-nearest:
246 	 *
247 	 *     (xy.hi, xy.lo) = x * y		(exact)
248 	 *     (r.hi, r.lo)   = xy.hi + z	(exact)
249 	 *     adj = xy.lo + r.lo		(inexact; low bit is sticky)
250 	 *     result = r.hi + adj		(correctly rounded)
251 	 */
252 	xy = dd_mul(vxs, ys);
253 	r = dd_add(xy.hi, zs);
254 
255 	spread = ex + ey;
256 
257 	if (r.hi == 0.0) {
258 		/*
259 		 * When the addends cancel to 0, ensure that the result has
260 		 * the correct sign.
261 		 */
262 		fesetround(oround);
263 		volatile double vzs = zs; /* XXX gcc CSE bug workaround */
264 		return (xy.hi + vzs + ldexp(xy.lo, spread));
265 	}
266 
267 	if (oround != FE_TONEAREST) {
268 		/*
269 		 * There is no need to worry about double rounding in directed
270 		 * rounding modes.
271 		 */
272 		fesetround(oround);
273 		/* work around clang bug 8100 */
274 		volatile double vrlo = r.lo;
275 		adj = vrlo + xy.lo;
276 		return (ldexp(r.hi + adj, spread));
277 	}
278 
279 	adj = add_adjusted(r.lo, xy.lo);
280 	if (spread + ilogb(r.hi) > -1023)
281 		return (ldexp(r.hi + adj, spread));
282 	else
283 		return (add_and_denormalize(r.hi, adj, spread));
284 }
285 
286 #if (LDBL_MANT_DIG == 53)
287 __weak_reference(fma, fmal);
288 #endif
289