xref: /freebsd/lib/msun/src/s_fma.c (revision 035dd78d30ba28a3dc15c05ec85ad10127165677)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2005-2011 David Schultz <das@FreeBSD.ORG>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include <fenv.h>
33 #include <float.h>
34 #include <math.h>
35 
36 #include "math_private.h"
37 
38 #ifdef USE_BUILTIN_FMA
39 double
40 fma(double x, double y, double z)
41 {
42 	return (__builtin_fma(x, y, z));
43 }
44 #else
45 /*
46  * A struct dd represents a floating-point number with twice the precision
47  * of a double.  We maintain the invariant that "hi" stores the 53 high-order
48  * bits of the result.
49  */
50 struct dd {
51 	double hi;
52 	double lo;
53 };
54 
55 /*
56  * Compute a+b exactly, returning the exact result in a struct dd.  We assume
57  * that both a and b are finite, but make no assumptions about their relative
58  * magnitudes.
59  */
60 static inline struct dd
61 dd_add(double a, double b)
62 {
63 	struct dd ret;
64 	double s;
65 
66 	ret.hi = a + b;
67 	s = ret.hi - a;
68 	ret.lo = (a - (ret.hi - s)) + (b - s);
69 	return (ret);
70 }
71 
72 /*
73  * Compute a+b, with a small tweak:  The least significant bit of the
74  * result is adjusted into a sticky bit summarizing all the bits that
75  * were lost to rounding.  This adjustment negates the effects of double
76  * rounding when the result is added to another number with a higher
77  * exponent.  For an explanation of round and sticky bits, see any reference
78  * on FPU design, e.g.,
79  *
80  *     J. Coonen.  An Implementation Guide to a Proposed Standard for
81  *     Floating-Point Arithmetic.  Computer, vol. 13, no. 1, Jan 1980.
82  */
83 static inline double
84 add_adjusted(double a, double b)
85 {
86 	struct dd sum;
87 	uint64_t hibits, lobits;
88 
89 	sum = dd_add(a, b);
90 	if (sum.lo != 0) {
91 		EXTRACT_WORD64(hibits, sum.hi);
92 		if ((hibits & 1) == 0) {
93 			/* hibits += (int)copysign(1.0, sum.hi * sum.lo) */
94 			EXTRACT_WORD64(lobits, sum.lo);
95 			hibits += 1 - ((hibits ^ lobits) >> 62);
96 			INSERT_WORD64(sum.hi, hibits);
97 		}
98 	}
99 	return (sum.hi);
100 }
101 
102 /*
103  * Compute ldexp(a+b, scale) with a single rounding error. It is assumed
104  * that the result will be subnormal, and care is taken to ensure that
105  * double rounding does not occur.
106  */
107 static inline double
108 add_and_denormalize(double a, double b, int scale)
109 {
110 	struct dd sum;
111 	uint64_t hibits, lobits;
112 	int bits_lost;
113 
114 	sum = dd_add(a, b);
115 
116 	/*
117 	 * If we are losing at least two bits of accuracy to denormalization,
118 	 * then the first lost bit becomes a round bit, and we adjust the
119 	 * lowest bit of sum.hi to make it a sticky bit summarizing all the
120 	 * bits in sum.lo. With the sticky bit adjusted, the hardware will
121 	 * break any ties in the correct direction.
122 	 *
123 	 * If we are losing only one bit to denormalization, however, we must
124 	 * break the ties manually.
125 	 */
126 	if (sum.lo != 0) {
127 		EXTRACT_WORD64(hibits, sum.hi);
128 		bits_lost = -((int)(hibits >> 52) & 0x7ff) - scale + 1;
129 		if ((bits_lost != 1) ^ (int)(hibits & 1)) {
130 			/* hibits += (int)copysign(1.0, sum.hi * sum.lo) */
131 			EXTRACT_WORD64(lobits, sum.lo);
132 			hibits += 1 - (((hibits ^ lobits) >> 62) & 2);
133 			INSERT_WORD64(sum.hi, hibits);
134 		}
135 	}
136 	return (ldexp(sum.hi, scale));
137 }
138 
139 /*
140  * Compute a*b exactly, returning the exact result in a struct dd.  We assume
141  * that both a and b are normalized, so no underflow or overflow will occur.
142  * The current rounding mode must be round-to-nearest.
143  */
144 static inline struct dd
145 dd_mul(double a, double b)
146 {
147 	static const double split = 0x1p27 + 1.0;
148 	struct dd ret;
149 	double ha, hb, la, lb, p, q;
150 
151 	p = a * split;
152 	ha = a - p;
153 	ha += p;
154 	la = a - ha;
155 
156 	p = b * split;
157 	hb = b - p;
158 	hb += p;
159 	lb = b - hb;
160 
161 	p = ha * hb;
162 	q = ha * lb + la * hb;
163 
164 	ret.hi = p + q;
165 	ret.lo = p - ret.hi + q + la * lb;
166 	return (ret);
167 }
168 
169 /*
170  * Fused multiply-add: Compute x * y + z with a single rounding error.
171  *
172  * We use scaling to avoid overflow/underflow, along with the
173  * canonical precision-doubling technique adapted from:
174  *
175  *	Dekker, T.  A Floating-Point Technique for Extending the
176  *	Available Precision.  Numer. Math. 18, 224-242 (1971).
177  *
178  * This algorithm is sensitive to the rounding precision.  FPUs such
179  * as the i387 must be set in double-precision mode if variables are
180  * to be stored in FP registers in order to avoid incorrect results.
181  * This is the default on FreeBSD, but not on many other systems.
182  *
183  * Hardware instructions should be used on architectures that support it,
184  * since this implementation will likely be several times slower.
185  */
186 double
187 fma(double x, double y, double z)
188 {
189 	double xs, ys, zs, adj;
190 	struct dd xy, r;
191 	int oround;
192 	int ex, ey, ez;
193 	int spread;
194 
195 	/*
196 	 * Handle special cases. The order of operations and the particular
197 	 * return values here are crucial in handling special cases involving
198 	 * infinities, NaNs, overflows, and signed zeroes correctly.
199 	 */
200 	if (x == 0.0 || y == 0.0)
201 		return (x * y + z);
202 	if (z == 0.0)
203 		return (x * y);
204 	if (!isfinite(x) || !isfinite(y))
205 		return (x * y + z);
206 	if (!isfinite(z))
207 		return (z);
208 
209 	xs = frexp(x, &ex);
210 	ys = frexp(y, &ey);
211 	zs = frexp(z, &ez);
212 	oround = fegetround();
213 	spread = ex + ey - ez;
214 
215 	/*
216 	 * If x * y and z are many orders of magnitude apart, the scaling
217 	 * will overflow, so we handle these cases specially.  Rounding
218 	 * modes other than FE_TONEAREST are painful.
219 	 */
220 	if (spread < -DBL_MANT_DIG) {
221 		feraiseexcept(FE_INEXACT);
222 		if (!isnormal(z))
223 			feraiseexcept(FE_UNDERFLOW);
224 		switch (oround) {
225 		case FE_TONEAREST:
226 			return (z);
227 		case FE_TOWARDZERO:
228 			if (x > 0.0 ^ y < 0.0 ^ z < 0.0)
229 				return (z);
230 			else
231 				return (nextafter(z, 0));
232 		case FE_DOWNWARD:
233 			if (x > 0.0 ^ y < 0.0)
234 				return (z);
235 			else
236 				return (nextafter(z, -INFINITY));
237 		default:	/* FE_UPWARD */
238 			if (x > 0.0 ^ y < 0.0)
239 				return (nextafter(z, INFINITY));
240 			else
241 				return (z);
242 		}
243 	}
244 	if (spread <= DBL_MANT_DIG * 2)
245 		zs = ldexp(zs, -spread);
246 	else
247 		zs = copysign(DBL_MIN, zs);
248 
249 	fesetround(FE_TONEAREST);
250 	/* work around clang bug 8100 */
251 	volatile double vxs = xs;
252 
253 	/*
254 	 * Basic approach for round-to-nearest:
255 	 *
256 	 *     (xy.hi, xy.lo) = x * y		(exact)
257 	 *     (r.hi, r.lo)   = xy.hi + z	(exact)
258 	 *     adj = xy.lo + r.lo		(inexact; low bit is sticky)
259 	 *     result = r.hi + adj		(correctly rounded)
260 	 */
261 	xy = dd_mul(vxs, ys);
262 	r = dd_add(xy.hi, zs);
263 
264 	spread = ex + ey;
265 
266 	if (r.hi == 0.0) {
267 		/*
268 		 * When the addends cancel to 0, ensure that the result has
269 		 * the correct sign.
270 		 */
271 		fesetround(oround);
272 		volatile double vzs = zs; /* XXX gcc CSE bug workaround */
273 		return (xy.hi + vzs + ldexp(xy.lo, spread));
274 	}
275 
276 	if (oround != FE_TONEAREST) {
277 		/*
278 		 * There is no need to worry about double rounding in directed
279 		 * rounding modes.
280 		 */
281 		fesetround(oround);
282 		/* work around clang bug 8100 */
283 		volatile double vrlo = r.lo;
284 		adj = vrlo + xy.lo;
285 		return (ldexp(r.hi + adj, spread));
286 	}
287 
288 	adj = add_adjusted(r.lo, xy.lo);
289 	if (spread + ilogb(r.hi) > -1023)
290 		return (ldexp(r.hi + adj, spread));
291 	else
292 		return (add_and_denormalize(r.hi, adj, spread));
293 }
294 #endif /* !USE_BUILTIN_FMA */
295 
296 #if (LDBL_MANT_DIG == 53)
297 __weak_reference(fma, fmal);
298 #endif
299