xref: /freebsd/lib/msun/src/s_expm1.c (revision 95eb4b873b6a8b527c5bd78d7191975dfca38998)
1 /*
2  * ====================================================
3  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
4  *
5  * Developed at SunPro, a Sun Microsystems, Inc. business.
6  * Permission to use, copy, modify, and distribute this
7  * software is freely granted, provided that this notice
8  * is preserved.
9  * ====================================================
10  */
11 
12 /* expm1(x)
13  * Returns exp(x)-1, the exponential of x minus 1.
14  *
15  * Method
16  *   1. Argument reduction:
17  *	Given x, find r and integer k such that
18  *
19  *               x = k*ln2 + r,  |r| <= 0.5*ln2 ~ 0.34658
20  *
21  *      Here a correction term c will be computed to compensate
22  *	the error in r when rounded to a floating-point number.
23  *
24  *   2. Approximating expm1(r) by a special rational function on
25  *	the interval [0,0.34658]:
26  *	Since
27  *	    r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ...
28  *	we define R1(r*r) by
29  *	    r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r)
30  *	That is,
31  *	    R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r)
32  *		     = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r))
33  *		     = 1 - r^2/60 + r^4/2520 - r^6/100800 + ...
34  *      We use a special Reme algorithm on [0,0.347] to generate
35  * 	a polynomial of degree 5 in r*r to approximate R1. The
36  *	maximum error of this polynomial approximation is bounded
37  *	by 2**-61. In other words,
38  *	    R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5
39  *	where 	Q1  =  -1.6666666666666567384E-2,
40  * 		Q2  =   3.9682539681370365873E-4,
41  * 		Q3  =  -9.9206344733435987357E-6,
42  * 		Q4  =   2.5051361420808517002E-7,
43  * 		Q5  =  -6.2843505682382617102E-9;
44  *		z   =  r*r,
45  *	with error bounded by
46  *	    |                  5           |     -61
47  *	    | 1.0+Q1*z+...+Q5*z   -  R1(z) | <= 2
48  *	    |                              |
49  *
50  *	expm1(r) = exp(r)-1 is then computed by the following
51  * 	specific way which minimize the accumulation rounding error:
52  *			       2     3
53  *			      r     r    [ 3 - (R1 + R1*r/2)  ]
54  *	      expm1(r) = r + --- + --- * [--------------------]
55  *		              2     2    [ 6 - r*(3 - R1*r/2) ]
56  *
57  *	To compensate the error in the argument reduction, we use
58  *		expm1(r+c) = expm1(r) + c + expm1(r)*c
59  *			   ~ expm1(r) + c + r*c
60  *	Thus c+r*c will be added in as the correction terms for
61  *	expm1(r+c). Now rearrange the term to avoid optimization
62  * 	screw up:
63  *		        (      2                                    2 )
64  *		        ({  ( r    [ R1 -  (3 - R1*r/2) ]  )  }    r  )
65  *	 expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- )
66  *	                ({  ( 2    [ 6 - r*(3 - R1*r/2) ]  )  }    2  )
67  *                      (                                             )
68  *
69  *		   = r - E
70  *   3. Scale back to obtain expm1(x):
71  *	From step 1, we have
72  *	   expm1(x) = either 2^k*[expm1(r)+1] - 1
73  *		    = or     2^k*[expm1(r) + (1-2^-k)]
74  *   4. Implementation notes:
75  *	(A). To save one multiplication, we scale the coefficient Qi
76  *	     to Qi*2^i, and replace z by (x^2)/2.
77  *	(B). To achieve maximum accuracy, we compute expm1(x) by
78  *	  (i)   if x < -56*ln2, return -1.0, (raise inexact if x!=inf)
79  *	  (ii)  if k=0, return r-E
80  *	  (iii) if k=-1, return 0.5*(r-E)-0.5
81  *        (iv)	if k=1 if r < -0.25, return 2*((r+0.5)- E)
82  *	       	       else	     return  1.0+2.0*(r-E);
83  *	  (v)   if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1)
84  *	  (vi)  if k <= 20, return 2^k((1-2^-k)-(E-r)), else
85  *	  (vii) return 2^k(1-((E+2^-k)-r))
86  *
87  * Special cases:
88  *	expm1(INF) is INF, expm1(NaN) is NaN;
89  *	expm1(-INF) is -1, and
90  *	for finite argument, only expm1(0)=0 is exact.
91  *
92  * Accuracy:
93  *	according to an error analysis, the error is always less than
94  *	1 ulp (unit in the last place).
95  *
96  * Misc. info.
97  *	For IEEE double
98  *	    if x >  7.09782712893383973096e+02 then expm1(x) overflow
99  *
100  * Constants:
101  * The hexadecimal values are the intended ones for the following
102  * constants. The decimal values may be used, provided that the
103  * compiler will convert from decimal to binary accurately enough
104  * to produce the hexadecimal values shown.
105  */
106 
107 #include <float.h>
108 
109 #include "math.h"
110 #include "math_private.h"
111 
112 static const double
113 one		= 1.0,
114 tiny		= 1.0e-300,
115 o_threshold	= 7.09782712893383973096e+02,/* 0x40862E42, 0xFEFA39EF */
116 ln2_hi		= 6.93147180369123816490e-01,/* 0x3fe62e42, 0xfee00000 */
117 ln2_lo		= 1.90821492927058770002e-10,/* 0x3dea39ef, 0x35793c76 */
118 invln2		= 1.44269504088896338700e+00,/* 0x3ff71547, 0x652b82fe */
119 /* Scaled Q's: Qn_here = 2**n * Qn_above, for R(2*z) where z = hxs = x*x/2: */
120 Q1  =  -3.33333333333331316428e-02, /* BFA11111 111110F4 */
121 Q2  =   1.58730158725481460165e-03, /* 3F5A01A0 19FE5585 */
122 Q3  =  -7.93650757867487942473e-05, /* BF14CE19 9EAADBB7 */
123 Q4  =   4.00821782732936239552e-06, /* 3ED0CFCA 86E65239 */
124 Q5  =  -2.01099218183624371326e-07; /* BE8AFDB7 6E09C32D */
125 
126 static volatile double huge = 1.0e+300;
127 
128 double
129 expm1(double x)
130 {
131 	double y,hi,lo,c,t,e,hxs,hfx,r1,twopk;
132 	int32_t k,xsb;
133 	u_int32_t hx;
134 
135 	GET_HIGH_WORD(hx,x);
136 	xsb = hx&0x80000000;		/* sign bit of x */
137 	hx &= 0x7fffffff;		/* high word of |x| */
138 
139     /* filter out huge and non-finite argument */
140 	if(hx >= 0x4043687A) {			/* if |x|>=56*ln2 */
141 	    if(hx >= 0x40862E42) {		/* if |x|>=709.78... */
142                 if(hx>=0x7ff00000) {
143 		    u_int32_t low;
144 		    GET_LOW_WORD(low,x);
145 		    if(((hx&0xfffff)|low)!=0)
146 		         return x+x; 	 /* NaN */
147 		    else return (xsb==0)? x:-1.0;/* exp(+-inf)={inf,-1} */
148 	        }
149 	        if(x > o_threshold) return huge*huge; /* overflow */
150 	    }
151 	    if(xsb!=0) { /* x < -56*ln2, return -1.0 with inexact */
152 		if(x+tiny<0.0)		/* raise inexact */
153 		return tiny-one;	/* return -1 */
154 	    }
155 	}
156 
157     /* argument reduction */
158 	if(hx > 0x3fd62e42) {		/* if  |x| > 0.5 ln2 */
159 	    if(hx < 0x3FF0A2B2) {	/* and |x| < 1.5 ln2 */
160 		if(xsb==0)
161 		    {hi = x - ln2_hi; lo =  ln2_lo;  k =  1;}
162 		else
163 		    {hi = x + ln2_hi; lo = -ln2_lo;  k = -1;}
164 	    } else {
165 		k  = invln2*x+((xsb==0)?0.5:-0.5);
166 		t  = k;
167 		hi = x - t*ln2_hi;	/* t*ln2_hi is exact here */
168 		lo = t*ln2_lo;
169 	    }
170 	    STRICT_ASSIGN(double, x, hi - lo);
171 	    c  = (hi-x)-lo;
172 	}
173 	else if(hx < 0x3c900000) {  	/* when |x|<2**-54, return x */
174 	    t = huge+x;	/* return x with inexact flags when x!=0 */
175 	    return x - (t-(huge+x));
176 	}
177 	else k = 0;
178 
179     /* x is now in primary range */
180 	hfx = 0.5*x;
181 	hxs = x*hfx;
182 	r1 = one+hxs*(Q1+hxs*(Q2+hxs*(Q3+hxs*(Q4+hxs*Q5))));
183 	t  = 3.0-r1*hfx;
184 	e  = hxs*((r1-t)/(6.0 - x*t));
185 	if(k==0) return x - (x*e-hxs);		/* c is 0 */
186 	else {
187 	    INSERT_WORDS(twopk,((u_int32_t)(0x3ff+k))<<20,0);	/* 2^k */
188 	    e  = (x*(e-c)-c);
189 	    e -= hxs;
190 	    if(k== -1) return 0.5*(x-e)-0.5;
191 	    if(k==1) {
192 	       	if(x < -0.25) return -2.0*(e-(x+0.5));
193 	       	else 	      return  one+2.0*(x-e);
194 	    }
195 	    if (k <= -2 || k>56) {   /* suffice to return exp(x)-1 */
196 	        y = one-(e-x);
197 		if (k == 1024) y = y*2.0*0x1p1023;
198 		else y = y*twopk;
199 	        return y-one;
200 	    }
201 	    t = one;
202 	    if(k<20) {
203 	        SET_HIGH_WORD(t,0x3ff00000 - (0x200000>>k));  /* t=1-2^-k */
204 	       	y = t-(e-x);
205 		y = y*twopk;
206 	   } else {
207 		SET_HIGH_WORD(t,((0x3ff-k)<<20));	/* 2^-k */
208 	       	y = x-(e+t);
209 	       	y += one;
210 		y = y*twopk;
211 	    }
212 	}
213 	return y;
214 }
215 
216 #if (LDBL_MANT_DIG == 53)
217 __weak_reference(expm1, expm1l);
218 #endif
219