xref: /freebsd/lib/msun/src/s_expm1.c (revision 02e9120893770924227138ba49df1edb3896112a)
1 /*
2  * ====================================================
3  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
4  *
5  * Developed at SunPro, a Sun Microsystems, Inc. business.
6  * Permission to use, copy, modify, and distribute this
7  * software is freely granted, provided that this notice
8  * is preserved.
9  * ====================================================
10  */
11 
12 #include <sys/cdefs.h>
13 /* expm1(x)
14  * Returns exp(x)-1, the exponential of x minus 1.
15  *
16  * Method
17  *   1. Argument reduction:
18  *	Given x, find r and integer k such that
19  *
20  *               x = k*ln2 + r,  |r| <= 0.5*ln2 ~ 0.34658
21  *
22  *      Here a correction term c will be computed to compensate
23  *	the error in r when rounded to a floating-point number.
24  *
25  *   2. Approximating expm1(r) by a special rational function on
26  *	the interval [0,0.34658]:
27  *	Since
28  *	    r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ...
29  *	we define R1(r*r) by
30  *	    r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r)
31  *	That is,
32  *	    R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r)
33  *		     = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r))
34  *		     = 1 - r^2/60 + r^4/2520 - r^6/100800 + ...
35  *      We use a special Reme algorithm on [0,0.347] to generate
36  * 	a polynomial of degree 5 in r*r to approximate R1. The
37  *	maximum error of this polynomial approximation is bounded
38  *	by 2**-61. In other words,
39  *	    R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5
40  *	where 	Q1  =  -1.6666666666666567384E-2,
41  * 		Q2  =   3.9682539681370365873E-4,
42  * 		Q3  =  -9.9206344733435987357E-6,
43  * 		Q4  =   2.5051361420808517002E-7,
44  * 		Q5  =  -6.2843505682382617102E-9;
45  *		z   =  r*r,
46  *	with error bounded by
47  *	    |                  5           |     -61
48  *	    | 1.0+Q1*z+...+Q5*z   -  R1(z) | <= 2
49  *	    |                              |
50  *
51  *	expm1(r) = exp(r)-1 is then computed by the following
52  * 	specific way which minimize the accumulation rounding error:
53  *			       2     3
54  *			      r     r    [ 3 - (R1 + R1*r/2)  ]
55  *	      expm1(r) = r + --- + --- * [--------------------]
56  *		              2     2    [ 6 - r*(3 - R1*r/2) ]
57  *
58  *	To compensate the error in the argument reduction, we use
59  *		expm1(r+c) = expm1(r) + c + expm1(r)*c
60  *			   ~ expm1(r) + c + r*c
61  *	Thus c+r*c will be added in as the correction terms for
62  *	expm1(r+c). Now rearrange the term to avoid optimization
63  * 	screw up:
64  *		        (      2                                    2 )
65  *		        ({  ( r    [ R1 -  (3 - R1*r/2) ]  )  }    r  )
66  *	 expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- )
67  *	                ({  ( 2    [ 6 - r*(3 - R1*r/2) ]  )  }    2  )
68  *                      (                                             )
69  *
70  *		   = r - E
71  *   3. Scale back to obtain expm1(x):
72  *	From step 1, we have
73  *	   expm1(x) = either 2^k*[expm1(r)+1] - 1
74  *		    = or     2^k*[expm1(r) + (1-2^-k)]
75  *   4. Implementation notes:
76  *	(A). To save one multiplication, we scale the coefficient Qi
77  *	     to Qi*2^i, and replace z by (x^2)/2.
78  *	(B). To achieve maximum accuracy, we compute expm1(x) by
79  *	  (i)   if x < -56*ln2, return -1.0, (raise inexact if x!=inf)
80  *	  (ii)  if k=0, return r-E
81  *	  (iii) if k=-1, return 0.5*(r-E)-0.5
82  *        (iv)	if k=1 if r < -0.25, return 2*((r+0.5)- E)
83  *	       	       else	     return  1.0+2.0*(r-E);
84  *	  (v)   if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1)
85  *	  (vi)  if k <= 20, return 2^k((1-2^-k)-(E-r)), else
86  *	  (vii) return 2^k(1-((E+2^-k)-r))
87  *
88  * Special cases:
89  *	expm1(INF) is INF, expm1(NaN) is NaN;
90  *	expm1(-INF) is -1, and
91  *	for finite argument, only expm1(0)=0 is exact.
92  *
93  * Accuracy:
94  *	according to an error analysis, the error is always less than
95  *	1 ulp (unit in the last place).
96  *
97  * Misc. info.
98  *	For IEEE double
99  *	    if x >  7.09782712893383973096e+02 then expm1(x) overflow
100  *
101  * Constants:
102  * The hexadecimal values are the intended ones for the following
103  * constants. The decimal values may be used, provided that the
104  * compiler will convert from decimal to binary accurately enough
105  * to produce the hexadecimal values shown.
106  */
107 
108 #include <float.h>
109 
110 #include "math.h"
111 #include "math_private.h"
112 
113 static const double
114 one		= 1.0,
115 tiny		= 1.0e-300,
116 o_threshold	= 7.09782712893383973096e+02,/* 0x40862E42, 0xFEFA39EF */
117 ln2_hi		= 6.93147180369123816490e-01,/* 0x3fe62e42, 0xfee00000 */
118 ln2_lo		= 1.90821492927058770002e-10,/* 0x3dea39ef, 0x35793c76 */
119 invln2		= 1.44269504088896338700e+00,/* 0x3ff71547, 0x652b82fe */
120 /* Scaled Q's: Qn_here = 2**n * Qn_above, for R(2*z) where z = hxs = x*x/2: */
121 Q1  =  -3.33333333333331316428e-02, /* BFA11111 111110F4 */
122 Q2  =   1.58730158725481460165e-03, /* 3F5A01A0 19FE5585 */
123 Q3  =  -7.93650757867487942473e-05, /* BF14CE19 9EAADBB7 */
124 Q4  =   4.00821782732936239552e-06, /* 3ED0CFCA 86E65239 */
125 Q5  =  -2.01099218183624371326e-07; /* BE8AFDB7 6E09C32D */
126 
127 static volatile double huge = 1.0e+300;
128 
129 double
130 expm1(double x)
131 {
132 	double y,hi,lo,c,t,e,hxs,hfx,r1,twopk;
133 	int32_t k,xsb;
134 	u_int32_t hx;
135 
136 	GET_HIGH_WORD(hx,x);
137 	xsb = hx&0x80000000;		/* sign bit of x */
138 	hx &= 0x7fffffff;		/* high word of |x| */
139 
140     /* filter out huge and non-finite argument */
141 	if(hx >= 0x4043687A) {			/* if |x|>=56*ln2 */
142 	    if(hx >= 0x40862E42) {		/* if |x|>=709.78... */
143                 if(hx>=0x7ff00000) {
144 		    u_int32_t low;
145 		    GET_LOW_WORD(low,x);
146 		    if(((hx&0xfffff)|low)!=0)
147 		         return x+x; 	 /* NaN */
148 		    else return (xsb==0)? x:-1.0;/* exp(+-inf)={inf,-1} */
149 	        }
150 	        if(x > o_threshold) return huge*huge; /* overflow */
151 	    }
152 	    if(xsb!=0) { /* x < -56*ln2, return -1.0 with inexact */
153 		if(x+tiny<0.0)		/* raise inexact */
154 		return tiny-one;	/* return -1 */
155 	    }
156 	}
157 
158     /* argument reduction */
159 	if(hx > 0x3fd62e42) {		/* if  |x| > 0.5 ln2 */
160 	    if(hx < 0x3FF0A2B2) {	/* and |x| < 1.5 ln2 */
161 		if(xsb==0)
162 		    {hi = x - ln2_hi; lo =  ln2_lo;  k =  1;}
163 		else
164 		    {hi = x + ln2_hi; lo = -ln2_lo;  k = -1;}
165 	    } else {
166 		k  = invln2*x+((xsb==0)?0.5:-0.5);
167 		t  = k;
168 		hi = x - t*ln2_hi;	/* t*ln2_hi is exact here */
169 		lo = t*ln2_lo;
170 	    }
171 	    STRICT_ASSIGN(double, x, hi - lo);
172 	    c  = (hi-x)-lo;
173 	}
174 	else if(hx < 0x3c900000) {  	/* when |x|<2**-54, return x */
175 	    t = huge+x;	/* return x with inexact flags when x!=0 */
176 	    return x - (t-(huge+x));
177 	}
178 	else k = 0;
179 
180     /* x is now in primary range */
181 	hfx = 0.5*x;
182 	hxs = x*hfx;
183 	r1 = one+hxs*(Q1+hxs*(Q2+hxs*(Q3+hxs*(Q4+hxs*Q5))));
184 	t  = 3.0-r1*hfx;
185 	e  = hxs*((r1-t)/(6.0 - x*t));
186 	if(k==0) return x - (x*e-hxs);		/* c is 0 */
187 	else {
188 	    INSERT_WORDS(twopk,((u_int32_t)(0x3ff+k))<<20,0);	/* 2^k */
189 	    e  = (x*(e-c)-c);
190 	    e -= hxs;
191 	    if(k== -1) return 0.5*(x-e)-0.5;
192 	    if(k==1) {
193 	       	if(x < -0.25) return -2.0*(e-(x+0.5));
194 	       	else 	      return  one+2.0*(x-e);
195 	    }
196 	    if (k <= -2 || k>56) {   /* suffice to return exp(x)-1 */
197 	        y = one-(e-x);
198 		if (k == 1024) y = y*2.0*0x1p1023;
199 		else y = y*twopk;
200 	        return y-one;
201 	    }
202 	    t = one;
203 	    if(k<20) {
204 	        SET_HIGH_WORD(t,0x3ff00000 - (0x200000>>k));  /* t=1-2^-k */
205 	       	y = t-(e-x);
206 		y = y*twopk;
207 	   } else {
208 		SET_HIGH_WORD(t,((0x3ff-k)<<20));	/* 2^-k */
209 	       	y = x-(e+t);
210 	       	y += one;
211 		y = y*twopk;
212 	    }
213 	}
214 	return y;
215 }
216 
217 #if (LDBL_MANT_DIG == 53)
218 __weak_reference(expm1, expm1l);
219 #endif
220