xref: /freebsd/lib/msun/src/s_erff.c (revision 35c0a8c449fd2b7f75029ebed5e10852240f0865)
1 /* s_erff.c -- float version of s_erf.c.
2  * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
3  */
4 
5 /*
6  * ====================================================
7  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
8  *
9  * Developed at SunPro, a Sun Microsystems, Inc. business.
10  * Permission to use, copy, modify, and distribute this
11  * software is freely granted, provided that this notice
12  * is preserved.
13  * ====================================================
14  */
15 
16 #include "math.h"
17 #include "math_private.h"
18 
19 /* XXX Prevent compilers from erroneously constant folding: */
20 static const volatile float tiny = 1e-30;
21 
22 static const float
23 half= 0.5,
24 one = 1,
25 two = 2,
26 erx = 8.42697144e-01,			/* 0x3f57bb00 */
27 /*
28  * In the domain [0, 2**-14], only the first term in the power series
29  * expansion of erf(x) is used.  The magnitude of the first neglected
30  * terms is less than 2**-42.
31  */
32 efx = 1.28379166e-01, /* 0x3e0375d4 */
33 efx8= 1.02703333e+00, /* 0x3f8375d4 */
34 /*
35  * Domain [0, 0.84375], range ~[-5.4419e-10, 5.5179e-10]:
36  * |(erf(x) - x)/x - pp(x)/qq(x)| < 2**-31
37  */
38 pp0  =  1.28379166e-01, /* 0x3e0375d4 */
39 pp1  = -3.36030394e-01, /* 0xbeac0c2d */
40 pp2  = -1.86261395e-03, /* 0xbaf422f4 */
41 qq1  =  3.12324315e-01, /* 0x3e9fe8f9 */
42 qq2  =  2.16070414e-02, /* 0x3cb10140 */
43 qq3  = -1.98859372e-03, /* 0xbb025311 */
44 /*
45  * Domain [0.84375, 1.25], range ~[-1.023e-9, 1.023e-9]:
46  * |(erf(x) - erx) - pa(x)/qa(x)| < 2**-31
47  */
48 pa0  =  3.65041046e-06, /* 0x3674f993 */
49 pa1  =  4.15109307e-01, /* 0x3ed48935 */
50 pa2  = -2.09395722e-01, /* 0xbe566bd5 */
51 pa3  =  8.67677554e-02, /* 0x3db1b34b */
52 qa1  =  4.95560974e-01, /* 0x3efdba2b */
53 qa2  =  3.71248513e-01, /* 0x3ebe1449 */
54 qa3  =  3.92478965e-02, /* 0x3d20c267 */
55 /*
56  * Domain [1.25,1/0.35], range ~[-4.821e-9, 4.927e-9]:
57  * |log(x*erfc(x)) + x**2 + 0.5625 - ra(x)/sa(x)| < 2**-28
58  */
59 ra0  = -9.88156721e-03, /* 0xbc21e64c */
60 ra1  = -5.43658376e-01, /* 0xbf0b2d32 */
61 ra2  = -1.66828310e+00, /* 0xbfd58a4d */
62 ra3  = -6.91554189e-01, /* 0xbf3109b2 */
63 sa1  =  4.48581553e+00, /* 0x408f8bcd */
64 sa2  =  4.10799170e+00, /* 0x408374ab */
65 sa3  =  5.53855181e-01, /* 0x3f0dc974 */
66 /*
67  * Domain [2.85715, 11], range ~[-1.484e-9, 1.505e-9]:
68  * |log(x*erfc(x)) + x**2 + 0.5625 - rb(x)/sb(x)| < 2**-30
69  */
70 rb0  = -9.86496918e-03, /* 0xbc21a0ae */
71 rb1  = -5.48049808e-01, /* 0xbf0c4cfe */
72 rb2  = -1.84115684e+00, /* 0xbfebab07 */
73 sb1  =  4.87132740e+00, /* 0x409be1ea */
74 sb2  =  3.04982710e+00, /* 0x4043305e */
75 sb3  = -7.61900663e-01; /* 0xbf430bec */
76 
77 float
78 erff(float x)
79 {
80 	int32_t hx,ix,i;
81 	float R,S,P,Q,s,y,z,r;
82 	GET_FLOAT_WORD(hx,x);
83 	ix = hx&0x7fffffff;
84 	if(ix>=0x7f800000) {		/* erff(nan)=nan */
85 	    i = ((u_int32_t)hx>>31)<<1;
86 	    return (float)(1-i)+one/x;	/* erff(+-inf)=+-1 */
87 	}
88 
89 	if(ix < 0x3f580000) {		/* |x|<0.84375 */
90 	    if(ix < 0x38800000) { 	/* |x|<2**-14 */
91 	        if (ix < 0x04000000)	/* |x|<0x1p-119 */
92 		    return (8*x+efx8*x)/8;	/* avoid spurious underflow */
93 		return x + efx*x;
94 	    }
95 	    z = x*x;
96 	    r = pp0+z*(pp1+z*pp2);
97 	    s = one+z*(qq1+z*(qq2+z*qq3));
98 	    y = r/s;
99 	    return x + x*y;
100 	}
101 	if(ix < 0x3fa00000) {		/* 0.84375 <= |x| < 1.25 */
102 	    s = fabsf(x)-one;
103 	    P = pa0+s*(pa1+s*(pa2+s*pa3));
104 	    Q = one+s*(qa1+s*(qa2+s*qa3));
105 	    if(hx>=0) return erx + P/Q; else return -erx - P/Q;
106 	}
107 	if (ix >= 0x40800000) {		/* inf>|x|>=4 */
108 	    if(hx>=0) return one-tiny; else return tiny-one;
109 	}
110 	x = fabsf(x);
111  	s = one/(x*x);
112 	if(ix< 0x4036db8c) {	/* |x| < 2.85715 ~ 1/0.35 */
113 	    R=ra0+s*(ra1+s*(ra2+s*ra3));
114 	    S=one+s*(sa1+s*(sa2+s*sa3));
115 	} else {	/* |x| >= 2.85715 ~ 1/0.35 */
116 	    R=rb0+s*(rb1+s*rb2);
117 	    S=one+s*(sb1+s*(sb2+s*sb3));
118 	}
119 	SET_FLOAT_WORD(z,hx&0xffffe000);
120 	r  = expf(-z*z-0.5625F)*expf((z-x)*(z+x)+R/S);
121 	if(hx>=0) return one-r/x; else return  r/x-one;
122 }
123 
124 float
125 erfcf(float x)
126 {
127 	int32_t hx,ix;
128 	float R,S,P,Q,s,y,z,r;
129 	GET_FLOAT_WORD(hx,x);
130 	ix = hx&0x7fffffff;
131 	if(ix>=0x7f800000) {			/* erfcf(nan)=nan */
132 						/* erfcf(+-inf)=0,2 */
133 	    return (float)(((u_int32_t)hx>>31)<<1)+one/x;
134 	}
135 
136 	if(ix < 0x3f580000) {		/* |x|<0.84375 */
137 	    if(ix < 0x33800000)  	/* |x|<2**-24 */
138 		return one-x;
139 	    z = x*x;
140 	    r = pp0+z*(pp1+z*pp2);
141 	    s = one+z*(qq1+z*(qq2+z*qq3));
142 	    y = r/s;
143 	    if(hx < 0x3e800000) {  	/* x<1/4 */
144 		return one-(x+x*y);
145 	    } else {
146 		r = x*y;
147 		r += (x-half);
148 	        return half - r ;
149 	    }
150 	}
151 	if(ix < 0x3fa00000) {		/* 0.84375 <= |x| < 1.25 */
152 	    s = fabsf(x)-one;
153 	    P = pa0+s*(pa1+s*(pa2+s*pa3));
154 	    Q = one+s*(qa1+s*(qa2+s*qa3));
155 	    if(hx>=0) {
156 	        z  = one-erx; return z - P/Q;
157 	    } else {
158 		z = erx+P/Q; return one+z;
159 	    }
160 	}
161 	if (ix < 0x41300000) {		/* |x|<11 */
162 	    x = fabsf(x);
163  	    s = one/(x*x);
164 	    if(ix< 0x4036db8c) {	/* |x| < 2.85715 ~ 1/.35 */
165 		R=ra0+s*(ra1+s*(ra2+s*ra3));
166 		S=one+s*(sa1+s*(sa2+s*sa3));
167 	    } else {			/* |x| >= 2.85715 ~ 1/.35 */
168 		if(hx<0&&ix>=0x40a00000) return two-tiny;/* x < -5 */
169 		R=rb0+s*(rb1+s*rb2);
170 		S=one+s*(sb1+s*(sb2+s*sb3));
171 	    }
172 	    SET_FLOAT_WORD(z,hx&0xffffe000);
173 	    r  = expf(-z*z-0.5625F)*expf((z-x)*(z+x)+R/S);
174 	    if(hx>0) return r/x; else return two-r/x;
175 	} else {
176 	    if(hx>0) return tiny*tiny; else return two-tiny;
177 	}
178 }
179