13a8617a8SJordan K. Hubbard /* @(#)s_erf.c 5.1 93/09/24 */ 23a8617a8SJordan K. Hubbard /* 33a8617a8SJordan K. Hubbard * ==================================================== 43a8617a8SJordan K. Hubbard * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. 53a8617a8SJordan K. Hubbard * 63a8617a8SJordan K. Hubbard * Developed at SunPro, a Sun Microsystems, Inc. business. 73a8617a8SJordan K. Hubbard * Permission to use, copy, modify, and distribute this 83a8617a8SJordan K. Hubbard * software is freely granted, provided that this notice 93a8617a8SJordan K. Hubbard * is preserved. 103a8617a8SJordan K. Hubbard * ==================================================== 113a8617a8SJordan K. Hubbard */ 123a8617a8SJordan K. Hubbard 135aa554c7SDavid Schultz #include <sys/cdefs.h> 145aa554c7SDavid Schultz __FBSDID("$FreeBSD$"); 153a8617a8SJordan K. Hubbard 163a8617a8SJordan K. Hubbard /* double erf(double x) 173a8617a8SJordan K. Hubbard * double erfc(double x) 183a8617a8SJordan K. Hubbard * x 193a8617a8SJordan K. Hubbard * 2 |\ 203a8617a8SJordan K. Hubbard * erf(x) = --------- | exp(-t*t)dt 213a8617a8SJordan K. Hubbard * sqrt(pi) \| 223a8617a8SJordan K. Hubbard * 0 233a8617a8SJordan K. Hubbard * 243a8617a8SJordan K. Hubbard * erfc(x) = 1-erf(x) 253a8617a8SJordan K. Hubbard * Note that 263a8617a8SJordan K. Hubbard * erf(-x) = -erf(x) 273a8617a8SJordan K. Hubbard * erfc(-x) = 2 - erfc(x) 283a8617a8SJordan K. Hubbard * 293a8617a8SJordan K. Hubbard * Method: 303a8617a8SJordan K. Hubbard * 1. For |x| in [0, 0.84375] 313a8617a8SJordan K. Hubbard * erf(x) = x + x*R(x^2) 323a8617a8SJordan K. Hubbard * erfc(x) = 1 - erf(x) if x in [-.84375,0.25] 333a8617a8SJordan K. Hubbard * = 0.5 + ((0.5-x)-x*R) if x in [0.25,0.84375] 343a8617a8SJordan K. Hubbard * where R = P/Q where P is an odd poly of degree 8 and 353a8617a8SJordan K. Hubbard * Q is an odd poly of degree 10. 363a8617a8SJordan K. Hubbard * -57.90 373a8617a8SJordan K. Hubbard * | R - (erf(x)-x)/x | <= 2 383a8617a8SJordan K. Hubbard * 393a8617a8SJordan K. Hubbard * 403a8617a8SJordan K. Hubbard * Remark. The formula is derived by noting 413a8617a8SJordan K. Hubbard * erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....) 423a8617a8SJordan K. Hubbard * and that 433a8617a8SJordan K. Hubbard * 2/sqrt(pi) = 1.128379167095512573896158903121545171688 443a8617a8SJordan K. Hubbard * is close to one. The interval is chosen because the fix 453a8617a8SJordan K. Hubbard * point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is 463a8617a8SJordan K. Hubbard * near 0.6174), and by some experiment, 0.84375 is chosen to 473a8617a8SJordan K. Hubbard * guarantee the error is less than one ulp for erf. 483a8617a8SJordan K. Hubbard * 493a8617a8SJordan K. Hubbard * 2. For |x| in [0.84375,1.25], let s = |x| - 1, and 503a8617a8SJordan K. Hubbard * c = 0.84506291151 rounded to single (24 bits) 513a8617a8SJordan K. Hubbard * erf(x) = sign(x) * (c + P1(s)/Q1(s)) 523a8617a8SJordan K. Hubbard * erfc(x) = (1-c) - P1(s)/Q1(s) if x > 0 533a8617a8SJordan K. Hubbard * 1+(c+P1(s)/Q1(s)) if x < 0 543a8617a8SJordan K. Hubbard * |P1/Q1 - (erf(|x|)-c)| <= 2**-59.06 553a8617a8SJordan K. Hubbard * Remark: here we use the taylor series expansion at x=1. 563a8617a8SJordan K. Hubbard * erf(1+s) = erf(1) + s*Poly(s) 573a8617a8SJordan K. Hubbard * = 0.845.. + P1(s)/Q1(s) 583a8617a8SJordan K. Hubbard * That is, we use rational approximation to approximate 593a8617a8SJordan K. Hubbard * erf(1+s) - (c = (single)0.84506291151) 603a8617a8SJordan K. Hubbard * Note that |P1/Q1|< 0.078 for x in [0.84375,1.25] 613a8617a8SJordan K. Hubbard * where 623a8617a8SJordan K. Hubbard * P1(s) = degree 6 poly in s 633a8617a8SJordan K. Hubbard * Q1(s) = degree 6 poly in s 643a8617a8SJordan K. Hubbard * 653a8617a8SJordan K. Hubbard * 3. For x in [1.25,1/0.35(~2.857143)], 663a8617a8SJordan K. Hubbard * erfc(x) = (1/x)*exp(-x*x-0.5625+R1/S1) 673a8617a8SJordan K. Hubbard * erf(x) = 1 - erfc(x) 683a8617a8SJordan K. Hubbard * where 693a8617a8SJordan K. Hubbard * R1(z) = degree 7 poly in z, (z=1/x^2) 703a8617a8SJordan K. Hubbard * S1(z) = degree 8 poly in z 713a8617a8SJordan K. Hubbard * 723a8617a8SJordan K. Hubbard * 4. For x in [1/0.35,28] 733a8617a8SJordan K. Hubbard * erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0 743a8617a8SJordan K. Hubbard * = 2.0 - (1/x)*exp(-x*x-0.5625+R2/S2) if -6<x<0 753a8617a8SJordan K. Hubbard * = 2.0 - tiny (if x <= -6) 763a8617a8SJordan K. Hubbard * erf(x) = sign(x)*(1.0 - erfc(x)) if x < 6, else 773a8617a8SJordan K. Hubbard * erf(x) = sign(x)*(1.0 - tiny) 783a8617a8SJordan K. Hubbard * where 793a8617a8SJordan K. Hubbard * R2(z) = degree 6 poly in z, (z=1/x^2) 803a8617a8SJordan K. Hubbard * S2(z) = degree 7 poly in z 813a8617a8SJordan K. Hubbard * 823a8617a8SJordan K. Hubbard * Note1: 833a8617a8SJordan K. Hubbard * To compute exp(-x*x-0.5625+R/S), let s be a single 843a8617a8SJordan K. Hubbard * precision number and s := x; then 853a8617a8SJordan K. Hubbard * -x*x = -s*s + (s-x)*(s+x) 863a8617a8SJordan K. Hubbard * exp(-x*x-0.5626+R/S) = 873a8617a8SJordan K. Hubbard * exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S); 883a8617a8SJordan K. Hubbard * Note2: 893a8617a8SJordan K. Hubbard * Here 4 and 5 make use of the asymptotic series 903a8617a8SJordan K. Hubbard * exp(-x*x) 913a8617a8SJordan K. Hubbard * erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) ) 923a8617a8SJordan K. Hubbard * x*sqrt(pi) 933a8617a8SJordan K. Hubbard * We use rational approximation to approximate 943a8617a8SJordan K. Hubbard * g(s)=f(1/x^2) = log(erfc(x)*x) - x*x + 0.5625 953a8617a8SJordan K. Hubbard * Here is the error bound for R1/S1 and R2/S2 963a8617a8SJordan K. Hubbard * |R1/S1 - f(x)| < 2**(-62.57) 973a8617a8SJordan K. Hubbard * |R2/S2 - f(x)| < 2**(-61.52) 983a8617a8SJordan K. Hubbard * 993a8617a8SJordan K. Hubbard * 5. For inf > x >= 28 1003a8617a8SJordan K. Hubbard * erf(x) = sign(x) *(1 - tiny) (raise inexact) 1013a8617a8SJordan K. Hubbard * erfc(x) = tiny*tiny (raise underflow) if x > 0 1023a8617a8SJordan K. Hubbard * = 2 - tiny if x<0 1033a8617a8SJordan K. Hubbard * 1043a8617a8SJordan K. Hubbard * 7. Special case: 1053a8617a8SJordan K. Hubbard * erf(0) = 0, erf(inf) = 1, erf(-inf) = -1, 1063a8617a8SJordan K. Hubbard * erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2, 1073a8617a8SJordan K. Hubbard * erfc/erf(NaN) is NaN 1083a8617a8SJordan K. Hubbard */ 1093a8617a8SJordan K. Hubbard 1103a8617a8SJordan K. Hubbard 1113a8617a8SJordan K. Hubbard #include "math.h" 1123a8617a8SJordan K. Hubbard #include "math_private.h" 1133a8617a8SJordan K. Hubbard 1143a8617a8SJordan K. Hubbard static const double 1153a8617a8SJordan K. Hubbard tiny = 1e-300, 1163a8617a8SJordan K. Hubbard half= 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */ 1173a8617a8SJordan K. Hubbard one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ 1183a8617a8SJordan K. Hubbard two = 2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */ 1193a8617a8SJordan K. Hubbard /* c = (float)0.84506291151 */ 1203a8617a8SJordan K. Hubbard erx = 8.45062911510467529297e-01, /* 0x3FEB0AC1, 0x60000000 */ 1213a8617a8SJordan K. Hubbard /* 1223a8617a8SJordan K. Hubbard * Coefficients for approximation to erf on [0,0.84375] 1233a8617a8SJordan K. Hubbard */ 1243a8617a8SJordan K. Hubbard efx = 1.28379167095512586316e-01, /* 0x3FC06EBA, 0x8214DB69 */ 1253a8617a8SJordan K. Hubbard efx8= 1.02703333676410069053e+00, /* 0x3FF06EBA, 0x8214DB69 */ 1263a8617a8SJordan K. Hubbard pp0 = 1.28379167095512558561e-01, /* 0x3FC06EBA, 0x8214DB68 */ 1273a8617a8SJordan K. Hubbard pp1 = -3.25042107247001499370e-01, /* 0xBFD4CD7D, 0x691CB913 */ 1283a8617a8SJordan K. Hubbard pp2 = -2.84817495755985104766e-02, /* 0xBF9D2A51, 0xDBD7194F */ 1293a8617a8SJordan K. Hubbard pp3 = -5.77027029648944159157e-03, /* 0xBF77A291, 0x236668E4 */ 1303a8617a8SJordan K. Hubbard pp4 = -2.37630166566501626084e-05, /* 0xBEF8EAD6, 0x120016AC */ 1313a8617a8SJordan K. Hubbard qq1 = 3.97917223959155352819e-01, /* 0x3FD97779, 0xCDDADC09 */ 1323a8617a8SJordan K. Hubbard qq2 = 6.50222499887672944485e-02, /* 0x3FB0A54C, 0x5536CEBA */ 1333a8617a8SJordan K. Hubbard qq3 = 5.08130628187576562776e-03, /* 0x3F74D022, 0xC4D36B0F */ 1343a8617a8SJordan K. Hubbard qq4 = 1.32494738004321644526e-04, /* 0x3F215DC9, 0x221C1A10 */ 1353a8617a8SJordan K. Hubbard qq5 = -3.96022827877536812320e-06, /* 0xBED09C43, 0x42A26120 */ 1363a8617a8SJordan K. Hubbard /* 1373a8617a8SJordan K. Hubbard * Coefficients for approximation to erf in [0.84375,1.25] 1383a8617a8SJordan K. Hubbard */ 1393a8617a8SJordan K. Hubbard pa0 = -2.36211856075265944077e-03, /* 0xBF6359B8, 0xBEF77538 */ 1403a8617a8SJordan K. Hubbard pa1 = 4.14856118683748331666e-01, /* 0x3FDA8D00, 0xAD92B34D */ 1413a8617a8SJordan K. Hubbard pa2 = -3.72207876035701323847e-01, /* 0xBFD7D240, 0xFBB8C3F1 */ 1423a8617a8SJordan K. Hubbard pa3 = 3.18346619901161753674e-01, /* 0x3FD45FCA, 0x805120E4 */ 1433a8617a8SJordan K. Hubbard pa4 = -1.10894694282396677476e-01, /* 0xBFBC6398, 0x3D3E28EC */ 1443a8617a8SJordan K. Hubbard pa5 = 3.54783043256182359371e-02, /* 0x3FA22A36, 0x599795EB */ 1453a8617a8SJordan K. Hubbard pa6 = -2.16637559486879084300e-03, /* 0xBF61BF38, 0x0A96073F */ 1463a8617a8SJordan K. Hubbard qa1 = 1.06420880400844228286e-01, /* 0x3FBB3E66, 0x18EEE323 */ 1473a8617a8SJordan K. Hubbard qa2 = 5.40397917702171048937e-01, /* 0x3FE14AF0, 0x92EB6F33 */ 1483a8617a8SJordan K. Hubbard qa3 = 7.18286544141962662868e-02, /* 0x3FB2635C, 0xD99FE9A7 */ 1493a8617a8SJordan K. Hubbard qa4 = 1.26171219808761642112e-01, /* 0x3FC02660, 0xE763351F */ 1503a8617a8SJordan K. Hubbard qa5 = 1.36370839120290507362e-02, /* 0x3F8BEDC2, 0x6B51DD1C */ 1513a8617a8SJordan K. Hubbard qa6 = 1.19844998467991074170e-02, /* 0x3F888B54, 0x5735151D */ 1523a8617a8SJordan K. Hubbard /* 1533a8617a8SJordan K. Hubbard * Coefficients for approximation to erfc in [1.25,1/0.35] 1543a8617a8SJordan K. Hubbard */ 1553a8617a8SJordan K. Hubbard ra0 = -9.86494403484714822705e-03, /* 0xBF843412, 0x600D6435 */ 1563a8617a8SJordan K. Hubbard ra1 = -6.93858572707181764372e-01, /* 0xBFE63416, 0xE4BA7360 */ 1573a8617a8SJordan K. Hubbard ra2 = -1.05586262253232909814e+01, /* 0xC0251E04, 0x41B0E726 */ 1583a8617a8SJordan K. Hubbard ra3 = -6.23753324503260060396e+01, /* 0xC04F300A, 0xE4CBA38D */ 1593a8617a8SJordan K. Hubbard ra4 = -1.62396669462573470355e+02, /* 0xC0644CB1, 0x84282266 */ 1603a8617a8SJordan K. Hubbard ra5 = -1.84605092906711035994e+02, /* 0xC067135C, 0xEBCCABB2 */ 1613a8617a8SJordan K. Hubbard ra6 = -8.12874355063065934246e+01, /* 0xC0545265, 0x57E4D2F2 */ 1623a8617a8SJordan K. Hubbard ra7 = -9.81432934416914548592e+00, /* 0xC023A0EF, 0xC69AC25C */ 1633a8617a8SJordan K. Hubbard sa1 = 1.96512716674392571292e+01, /* 0x4033A6B9, 0xBD707687 */ 1643a8617a8SJordan K. Hubbard sa2 = 1.37657754143519042600e+02, /* 0x4061350C, 0x526AE721 */ 1653a8617a8SJordan K. Hubbard sa3 = 4.34565877475229228821e+02, /* 0x407B290D, 0xD58A1A71 */ 1663a8617a8SJordan K. Hubbard sa4 = 6.45387271733267880336e+02, /* 0x40842B19, 0x21EC2868 */ 1673a8617a8SJordan K. Hubbard sa5 = 4.29008140027567833386e+02, /* 0x407AD021, 0x57700314 */ 1683a8617a8SJordan K. Hubbard sa6 = 1.08635005541779435134e+02, /* 0x405B28A3, 0xEE48AE2C */ 1693a8617a8SJordan K. Hubbard sa7 = 6.57024977031928170135e+00, /* 0x401A47EF, 0x8E484A93 */ 1703a8617a8SJordan K. Hubbard sa8 = -6.04244152148580987438e-02, /* 0xBFAEEFF2, 0xEE749A62 */ 1713a8617a8SJordan K. Hubbard /* 1723a8617a8SJordan K. Hubbard * Coefficients for approximation to erfc in [1/.35,28] 1733a8617a8SJordan K. Hubbard */ 1743a8617a8SJordan K. Hubbard rb0 = -9.86494292470009928597e-03, /* 0xBF843412, 0x39E86F4A */ 1753a8617a8SJordan K. Hubbard rb1 = -7.99283237680523006574e-01, /* 0xBFE993BA, 0x70C285DE */ 1763a8617a8SJordan K. Hubbard rb2 = -1.77579549177547519889e+01, /* 0xC031C209, 0x555F995A */ 1773a8617a8SJordan K. Hubbard rb3 = -1.60636384855821916062e+02, /* 0xC064145D, 0x43C5ED98 */ 1783a8617a8SJordan K. Hubbard rb4 = -6.37566443368389627722e+02, /* 0xC083EC88, 0x1375F228 */ 1793a8617a8SJordan K. Hubbard rb5 = -1.02509513161107724954e+03, /* 0xC0900461, 0x6A2E5992 */ 1803a8617a8SJordan K. Hubbard rb6 = -4.83519191608651397019e+02, /* 0xC07E384E, 0x9BDC383F */ 1813a8617a8SJordan K. Hubbard sb1 = 3.03380607434824582924e+01, /* 0x403E568B, 0x261D5190 */ 1823a8617a8SJordan K. Hubbard sb2 = 3.25792512996573918826e+02, /* 0x40745CAE, 0x221B9F0A */ 1833a8617a8SJordan K. Hubbard sb3 = 1.53672958608443695994e+03, /* 0x409802EB, 0x189D5118 */ 1843a8617a8SJordan K. Hubbard sb4 = 3.19985821950859553908e+03, /* 0x40A8FFB7, 0x688C246A */ 1853a8617a8SJordan K. Hubbard sb5 = 2.55305040643316442583e+03, /* 0x40A3F219, 0xCEDF3BE6 */ 1863a8617a8SJordan K. Hubbard sb6 = 4.74528541206955367215e+02, /* 0x407DA874, 0xE79FE763 */ 1873a8617a8SJordan K. Hubbard sb7 = -2.24409524465858183362e+01; /* 0xC03670E2, 0x42712D62 */ 1883a8617a8SJordan K. Hubbard 18959b19ff1SAlfred Perlstein double 19059b19ff1SAlfred Perlstein erf(double x) 1913a8617a8SJordan K. Hubbard { 1923a8617a8SJordan K. Hubbard int32_t hx,ix,i; 1933a8617a8SJordan K. Hubbard double R,S,P,Q,s,y,z,r; 1943a8617a8SJordan K. Hubbard GET_HIGH_WORD(hx,x); 1953a8617a8SJordan K. Hubbard ix = hx&0x7fffffff; 1963a8617a8SJordan K. Hubbard if(ix>=0x7ff00000) { /* erf(nan)=nan */ 1973a8617a8SJordan K. Hubbard i = ((u_int32_t)hx>>31)<<1; 1983a8617a8SJordan K. Hubbard return (double)(1-i)+one/x; /* erf(+-inf)=+-1 */ 1993a8617a8SJordan K. Hubbard } 2003a8617a8SJordan K. Hubbard 2013a8617a8SJordan K. Hubbard if(ix < 0x3feb0000) { /* |x|<0.84375 */ 2023a8617a8SJordan K. Hubbard if(ix < 0x3e300000) { /* |x|<2**-28 */ 2033a8617a8SJordan K. Hubbard if (ix < 0x00800000) 204*2a3910b9SSteve Kargl return (8*x+efx8*x)/8; /* avoid spurious underflow */ 2053a8617a8SJordan K. Hubbard return x + efx*x; 2063a8617a8SJordan K. Hubbard } 2073a8617a8SJordan K. Hubbard z = x*x; 2083a8617a8SJordan K. Hubbard r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4))); 2093a8617a8SJordan K. Hubbard s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5)))); 2103a8617a8SJordan K. Hubbard y = r/s; 2113a8617a8SJordan K. Hubbard return x + x*y; 2123a8617a8SJordan K. Hubbard } 2133a8617a8SJordan K. Hubbard if(ix < 0x3ff40000) { /* 0.84375 <= |x| < 1.25 */ 2143a8617a8SJordan K. Hubbard s = fabs(x)-one; 2153a8617a8SJordan K. Hubbard P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6))))); 2163a8617a8SJordan K. Hubbard Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6))))); 2173a8617a8SJordan K. Hubbard if(hx>=0) return erx + P/Q; else return -erx - P/Q; 2183a8617a8SJordan K. Hubbard } 2193a8617a8SJordan K. Hubbard if (ix >= 0x40180000) { /* inf>|x|>=6 */ 2203a8617a8SJordan K. Hubbard if(hx>=0) return one-tiny; else return tiny-one; 2213a8617a8SJordan K. Hubbard } 2223a8617a8SJordan K. Hubbard x = fabs(x); 2233a8617a8SJordan K. Hubbard s = one/(x*x); 2243a8617a8SJordan K. Hubbard if(ix< 0x4006DB6E) { /* |x| < 1/0.35 */ 2253a8617a8SJordan K. Hubbard R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*( 2263a8617a8SJordan K. Hubbard ra5+s*(ra6+s*ra7)))))); 2273a8617a8SJordan K. Hubbard S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*( 2283a8617a8SJordan K. Hubbard sa5+s*(sa6+s*(sa7+s*sa8))))))); 2293a8617a8SJordan K. Hubbard } else { /* |x| >= 1/0.35 */ 2303a8617a8SJordan K. Hubbard R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*( 2313a8617a8SJordan K. Hubbard rb5+s*rb6))))); 2323a8617a8SJordan K. Hubbard S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*( 2333a8617a8SJordan K. Hubbard sb5+s*(sb6+s*sb7)))))); 2343a8617a8SJordan K. Hubbard } 2353a8617a8SJordan K. Hubbard z = x; 2363a8617a8SJordan K. Hubbard SET_LOW_WORD(z,0); 2373a8617a8SJordan K. Hubbard r = __ieee754_exp(-z*z-0.5625)*__ieee754_exp((z-x)*(z+x)+R/S); 2383a8617a8SJordan K. Hubbard if(hx>=0) return one-r/x; else return r/x-one; 2393a8617a8SJordan K. Hubbard } 2403a8617a8SJordan K. Hubbard 24159b19ff1SAlfred Perlstein double 24259b19ff1SAlfred Perlstein erfc(double x) 2433a8617a8SJordan K. Hubbard { 2443a8617a8SJordan K. Hubbard int32_t hx,ix; 2453a8617a8SJordan K. Hubbard double R,S,P,Q,s,y,z,r; 2463a8617a8SJordan K. Hubbard GET_HIGH_WORD(hx,x); 2473a8617a8SJordan K. Hubbard ix = hx&0x7fffffff; 2483a8617a8SJordan K. Hubbard if(ix>=0x7ff00000) { /* erfc(nan)=nan */ 2493a8617a8SJordan K. Hubbard /* erfc(+-inf)=0,2 */ 2503a8617a8SJordan K. Hubbard return (double)(((u_int32_t)hx>>31)<<1)+one/x; 2513a8617a8SJordan K. Hubbard } 2523a8617a8SJordan K. Hubbard 2533a8617a8SJordan K. Hubbard if(ix < 0x3feb0000) { /* |x|<0.84375 */ 2543a8617a8SJordan K. Hubbard if(ix < 0x3c700000) /* |x|<2**-56 */ 2553a8617a8SJordan K. Hubbard return one-x; 2563a8617a8SJordan K. Hubbard z = x*x; 2573a8617a8SJordan K. Hubbard r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4))); 2583a8617a8SJordan K. Hubbard s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5)))); 2593a8617a8SJordan K. Hubbard y = r/s; 2603a8617a8SJordan K. Hubbard if(hx < 0x3fd00000) { /* x<1/4 */ 2613a8617a8SJordan K. Hubbard return one-(x+x*y); 2623a8617a8SJordan K. Hubbard } else { 2633a8617a8SJordan K. Hubbard r = x*y; 2643a8617a8SJordan K. Hubbard r += (x-half); 2653a8617a8SJordan K. Hubbard return half - r ; 2663a8617a8SJordan K. Hubbard } 2673a8617a8SJordan K. Hubbard } 2683a8617a8SJordan K. Hubbard if(ix < 0x3ff40000) { /* 0.84375 <= |x| < 1.25 */ 2693a8617a8SJordan K. Hubbard s = fabs(x)-one; 2703a8617a8SJordan K. Hubbard P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6))))); 2713a8617a8SJordan K. Hubbard Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6))))); 2723a8617a8SJordan K. Hubbard if(hx>=0) { 2733a8617a8SJordan K. Hubbard z = one-erx; return z - P/Q; 2743a8617a8SJordan K. Hubbard } else { 2753a8617a8SJordan K. Hubbard z = erx+P/Q; return one+z; 2763a8617a8SJordan K. Hubbard } 2773a8617a8SJordan K. Hubbard } 2783a8617a8SJordan K. Hubbard if (ix < 0x403c0000) { /* |x|<28 */ 2793a8617a8SJordan K. Hubbard x = fabs(x); 2803a8617a8SJordan K. Hubbard s = one/(x*x); 2813a8617a8SJordan K. Hubbard if(ix< 0x4006DB6D) { /* |x| < 1/.35 ~ 2.857143*/ 2823a8617a8SJordan K. Hubbard R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*( 2833a8617a8SJordan K. Hubbard ra5+s*(ra6+s*ra7)))))); 2843a8617a8SJordan K. Hubbard S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*( 2853a8617a8SJordan K. Hubbard sa5+s*(sa6+s*(sa7+s*sa8))))))); 2863a8617a8SJordan K. Hubbard } else { /* |x| >= 1/.35 ~ 2.857143 */ 2873a8617a8SJordan K. Hubbard if(hx<0&&ix>=0x40180000) return two-tiny;/* x < -6 */ 2883a8617a8SJordan K. Hubbard R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*( 2893a8617a8SJordan K. Hubbard rb5+s*rb6))))); 2903a8617a8SJordan K. Hubbard S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*( 2913a8617a8SJordan K. Hubbard sb5+s*(sb6+s*sb7)))))); 2923a8617a8SJordan K. Hubbard } 2933a8617a8SJordan K. Hubbard z = x; 2943a8617a8SJordan K. Hubbard SET_LOW_WORD(z,0); 2953a8617a8SJordan K. Hubbard r = __ieee754_exp(-z*z-0.5625)* 2963a8617a8SJordan K. Hubbard __ieee754_exp((z-x)*(z+x)+R/S); 2973a8617a8SJordan K. Hubbard if(hx>0) return r/x; else return two-r/x; 2983a8617a8SJordan K. Hubbard } else { 2993a8617a8SJordan K. Hubbard if(hx>0) return tiny*tiny; else return two-tiny; 3003a8617a8SJordan K. Hubbard } 3013a8617a8SJordan K. Hubbard } 302