xref: /freebsd/lib/msun/src/s_ctanh.c (revision 3332f1b444d4a73238e9f59cca27bfc95fe936bd)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2011 David Schultz
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 /*
30  * Hyperbolic tangent of a complex argument z = x + I y.
31  *
32  * The algorithm is from:
33  *
34  *   W. Kahan.  Branch Cuts for Complex Elementary Functions or Much
35  *   Ado About Nothing's Sign Bit.  In The State of the Art in
36  *   Numerical Analysis, pp. 165 ff.  Iserles and Powell, eds., 1987.
37  *
38  * Method:
39  *
40  *   Let t    = tan(x)
41  *       beta = 1/cos^2(y)
42  *       s    = sinh(x)
43  *       rho  = cosh(x)
44  *
45  *   We have:
46  *
47  *   tanh(z) = sinh(z) / cosh(z)
48  *
49  *             sinh(x) cos(y) + I cosh(x) sin(y)
50  *           = ---------------------------------
51  *             cosh(x) cos(y) + I sinh(x) sin(y)
52  *
53  *             cosh(x) sinh(x) / cos^2(y) + I tan(y)
54  *           = -------------------------------------
55  *                    1 + sinh^2(x) / cos^2(y)
56  *
57  *             beta rho s + I t
58  *           = ----------------
59  *               1 + beta s^2
60  *
61  * Modifications:
62  *
63  *   I omitted the original algorithm's handling of overflow in tan(x) after
64  *   verifying with nearpi.c that this can't happen in IEEE single or double
65  *   precision.  I also handle large x differently.
66  */
67 
68 #include <sys/cdefs.h>
69 __FBSDID("$FreeBSD$");
70 
71 #include <complex.h>
72 #include <math.h>
73 
74 #include "math_private.h"
75 
76 double complex
77 ctanh(double complex z)
78 {
79 	double x, y;
80 	double t, beta, s, rho, denom;
81 	uint32_t hx, ix, lx;
82 
83 	x = creal(z);
84 	y = cimag(z);
85 
86 	EXTRACT_WORDS(hx, lx, x);
87 	ix = hx & 0x7fffffff;
88 
89 	/*
90 	 * ctanh(NaN +- I 0) = d(NaN) +- I 0
91 	 *
92 	 * ctanh(NaN + I y) = d(NaN,y) + I d(NaN,y)	for y != 0
93 	 *
94 	 * The imaginary part has the sign of x*sin(2*y), but there's no
95 	 * special effort to get this right.
96 	 *
97 	 * ctanh(+-Inf +- I Inf) = +-1 +- I 0
98 	 *
99 	 * ctanh(+-Inf + I y) = +-1 + I 0 sin(2y)	for y finite
100 	 *
101 	 * The imaginary part of the sign is unspecified.  This special
102 	 * case is only needed to avoid a spurious invalid exception when
103 	 * y is infinite.
104 	 */
105 	if (ix >= 0x7ff00000) {
106 		if ((ix & 0xfffff) | lx)	/* x is NaN */
107 			return (CMPLX(nan_mix(x, y),
108 			    y == 0 ? y : nan_mix(x, y)));
109 		SET_HIGH_WORD(x, hx - 0x40000000);	/* x = copysign(1, x) */
110 		return (CMPLX(x, copysign(0, isinf(y) ? y : sin(y) * cos(y))));
111 	}
112 
113 	/*
114 	 * ctanh(+-0 + i NAN) = +-0 + i NaN
115 	 * ctanh(+-0 +- i Inf) = +-0 + i NaN
116 	 * ctanh(x + i NAN) = NaN + i NaN
117 	 * ctanh(x +- i Inf) = NaN + i NaN
118 	 */
119 	if (!isfinite(y))
120 		return (CMPLX(x ? y - y : x, y - y));
121 
122 	/*
123 	 * ctanh(+-huge +- I y) ~= +-1 +- I 2sin(2y)/exp(2x), using the
124 	 * approximation sinh^2(huge) ~= exp(2*huge) / 4.
125 	 * We use a modified formula to avoid spurious overflow.
126 	 */
127 	if (ix >= 0x40360000) {	/* |x| >= 22 */
128 		double exp_mx = exp(-fabs(x));
129 		return (CMPLX(copysign(1, x),
130 		    4 * sin(y) * cos(y) * exp_mx * exp_mx));
131 	}
132 
133 	/* Kahan's algorithm */
134 	t = tan(y);
135 	beta = 1.0 + t * t;	/* = 1 / cos^2(y) */
136 	s = sinh(x);
137 	rho = sqrt(1 + s * s);	/* = cosh(x) */
138 	denom = 1 + beta * s * s;
139 	return (CMPLX((beta * rho * s) / denom, t / denom));
140 }
141 
142 double complex
143 ctan(double complex z)
144 {
145 
146 	/* ctan(z) = -I * ctanh(I * z) = I * conj(ctanh(I * conj(z))) */
147 	z = ctanh(CMPLX(cimag(z), creal(z)));
148 	return (CMPLX(cimag(z), creal(z)));
149 }
150