13daee1d6SDavid Schultz /*-
2*4d846d26SWarner Losh * SPDX-License-Identifier: BSD-2-Clause
35e53a4f9SPedro F. Giffuni *
43daee1d6SDavid Schultz * Copyright (c) 2011 David Schultz
53daee1d6SDavid Schultz * All rights reserved.
63daee1d6SDavid Schultz *
73daee1d6SDavid Schultz * Redistribution and use in source and binary forms, with or without
83daee1d6SDavid Schultz * modification, are permitted provided that the following conditions
93daee1d6SDavid Schultz * are met:
103daee1d6SDavid Schultz * 1. Redistributions of source code must retain the above copyright
113daee1d6SDavid Schultz * notice unmodified, this list of conditions, and the following
123daee1d6SDavid Schultz * disclaimer.
133daee1d6SDavid Schultz * 2. Redistributions in binary form must reproduce the above copyright
143daee1d6SDavid Schultz * notice, this list of conditions and the following disclaimer in the
153daee1d6SDavid Schultz * documentation and/or other materials provided with the distribution.
163daee1d6SDavid Schultz *
173daee1d6SDavid Schultz * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
183daee1d6SDavid Schultz * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
193daee1d6SDavid Schultz * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
203daee1d6SDavid Schultz * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
213daee1d6SDavid Schultz * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
223daee1d6SDavid Schultz * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
233daee1d6SDavid Schultz * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
243daee1d6SDavid Schultz * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
253daee1d6SDavid Schultz * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
263daee1d6SDavid Schultz * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
273daee1d6SDavid Schultz */
283daee1d6SDavid Schultz
293daee1d6SDavid Schultz /*
3068b433d7STijl Coosemans * Hyperbolic tangent of a complex argument z = x + I y.
313daee1d6SDavid Schultz *
323daee1d6SDavid Schultz * The algorithm is from:
333daee1d6SDavid Schultz *
343daee1d6SDavid Schultz * W. Kahan. Branch Cuts for Complex Elementary Functions or Much
353daee1d6SDavid Schultz * Ado About Nothing's Sign Bit. In The State of the Art in
363daee1d6SDavid Schultz * Numerical Analysis, pp. 165 ff. Iserles and Powell, eds., 1987.
373daee1d6SDavid Schultz *
383daee1d6SDavid Schultz * Method:
393daee1d6SDavid Schultz *
403daee1d6SDavid Schultz * Let t = tan(x)
413daee1d6SDavid Schultz * beta = 1/cos^2(y)
423daee1d6SDavid Schultz * s = sinh(x)
433daee1d6SDavid Schultz * rho = cosh(x)
443daee1d6SDavid Schultz *
453daee1d6SDavid Schultz * We have:
463daee1d6SDavid Schultz *
473daee1d6SDavid Schultz * tanh(z) = sinh(z) / cosh(z)
483daee1d6SDavid Schultz *
4968b433d7STijl Coosemans * sinh(x) cos(y) + I cosh(x) sin(y)
503daee1d6SDavid Schultz * = ---------------------------------
5168b433d7STijl Coosemans * cosh(x) cos(y) + I sinh(x) sin(y)
523daee1d6SDavid Schultz *
5368b433d7STijl Coosemans * cosh(x) sinh(x) / cos^2(y) + I tan(y)
543daee1d6SDavid Schultz * = -------------------------------------
553daee1d6SDavid Schultz * 1 + sinh^2(x) / cos^2(y)
563daee1d6SDavid Schultz *
5768b433d7STijl Coosemans * beta rho s + I t
583daee1d6SDavid Schultz * = ----------------
593daee1d6SDavid Schultz * 1 + beta s^2
603daee1d6SDavid Schultz *
613daee1d6SDavid Schultz * Modifications:
623daee1d6SDavid Schultz *
633daee1d6SDavid Schultz * I omitted the original algorithm's handling of overflow in tan(x) after
643daee1d6SDavid Schultz * verifying with nearpi.c that this can't happen in IEEE single or double
653daee1d6SDavid Schultz * precision. I also handle large x differently.
663daee1d6SDavid Schultz */
673daee1d6SDavid Schultz
683daee1d6SDavid Schultz #include <complex.h>
693daee1d6SDavid Schultz #include <math.h>
703daee1d6SDavid Schultz
713daee1d6SDavid Schultz #include "math_private.h"
723daee1d6SDavid Schultz
733daee1d6SDavid Schultz double complex
ctanh(double complex z)743daee1d6SDavid Schultz ctanh(double complex z)
753daee1d6SDavid Schultz {
76e2157cd0SDimitry Andric double x, y;
773daee1d6SDavid Schultz double t, beta, s, rho, denom;
783daee1d6SDavid Schultz uint32_t hx, ix, lx;
793daee1d6SDavid Schultz
803daee1d6SDavid Schultz x = creal(z);
813daee1d6SDavid Schultz y = cimag(z);
823daee1d6SDavid Schultz
833daee1d6SDavid Schultz EXTRACT_WORDS(hx, lx, x);
843daee1d6SDavid Schultz ix = hx & 0x7fffffff;
853daee1d6SDavid Schultz
863daee1d6SDavid Schultz /*
8768b433d7STijl Coosemans * ctanh(NaN +- I 0) = d(NaN) +- I 0
883daee1d6SDavid Schultz *
8968b433d7STijl Coosemans * ctanh(NaN + I y) = d(NaN,y) + I d(NaN,y) for y != 0
903daee1d6SDavid Schultz *
913daee1d6SDavid Schultz * The imaginary part has the sign of x*sin(2*y), but there's no
923daee1d6SDavid Schultz * special effort to get this right.
933daee1d6SDavid Schultz *
9468b433d7STijl Coosemans * ctanh(+-Inf +- I Inf) = +-1 +- I 0
953daee1d6SDavid Schultz *
9668b433d7STijl Coosemans * ctanh(+-Inf + I y) = +-1 + I 0 sin(2y) for y finite
973daee1d6SDavid Schultz *
983daee1d6SDavid Schultz * The imaginary part of the sign is unspecified. This special
993daee1d6SDavid Schultz * case is only needed to avoid a spurious invalid exception when
1003daee1d6SDavid Schultz * y is infinite.
1013daee1d6SDavid Schultz */
1023daee1d6SDavid Schultz if (ix >= 0x7ff00000) {
1033daee1d6SDavid Schultz if ((ix & 0xfffff) | lx) /* x is NaN */
1046f1b8a07SBruce Evans return (CMPLX(nan_mix(x, y),
1056f1b8a07SBruce Evans y == 0 ? y : nan_mix(x, y)));
1063daee1d6SDavid Schultz SET_HIGH_WORD(x, hx - 0x40000000); /* x = copysign(1, x) */
1072cec876aSEd Schouten return (CMPLX(x, copysign(0, isinf(y) ? y : sin(y) * cos(y))));
1083daee1d6SDavid Schultz }
1093daee1d6SDavid Schultz
1103daee1d6SDavid Schultz /*
111a7b42c4bSAlex Richardson * ctanh(+-0 + i NAN) = +-0 + i NaN
112a7b42c4bSAlex Richardson * ctanh(+-0 +- i Inf) = +-0 + i NaN
113a7b42c4bSAlex Richardson * ctanh(x + i NAN) = NaN + i NaN
114a7b42c4bSAlex Richardson * ctanh(x +- i Inf) = NaN + i NaN
115bc23acdcSDavid Schultz */
116bc23acdcSDavid Schultz if (!isfinite(y))
117a7b42c4bSAlex Richardson return (CMPLX(x ? y - y : x, y - y));
118bc23acdcSDavid Schultz
119bc23acdcSDavid Schultz /*
12068b433d7STijl Coosemans * ctanh(+-huge +- I y) ~= +-1 +- I 2sin(2y)/exp(2x), using the
1213daee1d6SDavid Schultz * approximation sinh^2(huge) ~= exp(2*huge) / 4.
1223daee1d6SDavid Schultz * We use a modified formula to avoid spurious overflow.
1233daee1d6SDavid Schultz */
12468b433d7STijl Coosemans if (ix >= 0x40360000) { /* |x| >= 22 */
1253daee1d6SDavid Schultz double exp_mx = exp(-fabs(x));
1262cec876aSEd Schouten return (CMPLX(copysign(1, x),
1273daee1d6SDavid Schultz 4 * sin(y) * cos(y) * exp_mx * exp_mx));
1283daee1d6SDavid Schultz }
1293daee1d6SDavid Schultz
1303daee1d6SDavid Schultz /* Kahan's algorithm */
1313daee1d6SDavid Schultz t = tan(y);
1323daee1d6SDavid Schultz beta = 1.0 + t * t; /* = 1 / cos^2(y) */
1333daee1d6SDavid Schultz s = sinh(x);
1343daee1d6SDavid Schultz rho = sqrt(1 + s * s); /* = cosh(x) */
1353daee1d6SDavid Schultz denom = 1 + beta * s * s;
1362cec876aSEd Schouten return (CMPLX((beta * rho * s) / denom, t / denom));
1373daee1d6SDavid Schultz }
1383daee1d6SDavid Schultz
1393daee1d6SDavid Schultz double complex
ctan(double complex z)1403daee1d6SDavid Schultz ctan(double complex z)
1413daee1d6SDavid Schultz {
1423daee1d6SDavid Schultz
14368b433d7STijl Coosemans /* ctan(z) = -I * ctanh(I * z) = I * conj(ctanh(I * conj(z))) */
14468b433d7STijl Coosemans z = ctanh(CMPLX(cimag(z), creal(z)));
14568b433d7STijl Coosemans return (CMPLX(cimag(z), creal(z)));
1463daee1d6SDavid Schultz }
147