xref: /freebsd/lib/msun/src/s_cbrtl.c (revision 2e3507c25e42292b45a5482e116d278f5515d04d)
1 /*-
2  * ====================================================
3  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
4  * Copyright (c) 2009-2011, Bruce D. Evans, Steven G. Kargl, David Schultz.
5  *
6  * Developed at SunPro, a Sun Microsystems, Inc. business.
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  *
12  * The argument reduction and testing for exceptional cases was
13  * written by Steven G. Kargl with input from Bruce D. Evans
14  * and David A. Schultz.
15  */
16 
17 #include <sys/cdefs.h>
18 #include <float.h>
19 #ifdef __i386__
20 #include <ieeefp.h>
21 #endif
22 
23 #include "fpmath.h"
24 #include "math.h"
25 #include "math_private.h"
26 
27 #define	BIAS	(LDBL_MAX_EXP - 1)
28 
29 static const unsigned
30     B1 = 709958130;	/* B1 = (127-127.0/3-0.03306235651)*2**23 */
31 
32 long double
33 cbrtl(long double x)
34 {
35 	union IEEEl2bits u, v;
36 	long double r, s, t, w;
37 	double dr, dt, dx;
38 	float ft, fx;
39 	uint32_t hx;
40 	uint16_t expsign;
41 	int k;
42 
43 	u.e = x;
44 	expsign = u.xbits.expsign;
45 	k = expsign & 0x7fff;
46 
47 	/*
48 	 * If x = +-Inf, then cbrt(x) = +-Inf.
49 	 * If x = NaN, then cbrt(x) = NaN.
50 	 */
51 	if (k == BIAS + LDBL_MAX_EXP)
52 		return (x + x);
53 
54 	ENTERI();
55 	if (k == 0) {
56 		/* If x = +-0, then cbrt(x) = +-0. */
57 		if ((u.bits.manh | u.bits.manl) == 0)
58 			RETURNI(x);
59 		/* Adjust subnormal numbers. */
60 		u.e *= 0x1.0p514;
61 		k = u.bits.exp;
62 		k -= BIAS + 514;
63  	} else
64 		k -= BIAS;
65 	u.xbits.expsign = BIAS;
66 	v.e = 1;
67 
68 	x = u.e;
69 	switch (k % 3) {
70 	case 1:
71 	case -2:
72 		x = 2*x;
73 		k--;
74 		break;
75 	case 2:
76 	case -1:
77 		x = 4*x;
78 		k -= 2;
79 		break;
80 	}
81 	v.xbits.expsign = (expsign & 0x8000) | (BIAS + k / 3);
82 
83 	/*
84 	 * The following is the guts of s_cbrtf, with the handling of
85 	 * special values removed and extra care for accuracy not taken,
86 	 * but with most of the extra accuracy not discarded.
87 	 */
88 
89 	/* ~5-bit estimate: */
90 	fx = x;
91 	GET_FLOAT_WORD(hx, fx);
92 	SET_FLOAT_WORD(ft, ((hx & 0x7fffffff) / 3 + B1));
93 
94 	/* ~16-bit estimate: */
95 	dx = x;
96 	dt = ft;
97 	dr = dt * dt * dt;
98 	dt = dt * (dx + dx + dr) / (dx + dr + dr);
99 
100 	/* ~47-bit estimate: */
101 	dr = dt * dt * dt;
102 	dt = dt * (dx + dx + dr) / (dx + dr + dr);
103 
104 #if LDBL_MANT_DIG == 64
105 	/*
106 	 * dt is cbrtl(x) to ~47 bits (after x has been reduced to 1 <= x < 8).
107 	 * Round it away from zero to 32 bits (32 so that t*t is exact, and
108 	 * away from zero for technical reasons).
109 	 */
110 	volatile double vd2 = 0x1.0p32;
111 	volatile double vd1 = 0x1.0p-31;
112 	#define vd ((long double)vd2 + vd1)
113 
114 	t = dt + vd - 0x1.0p32;
115 #elif LDBL_MANT_DIG == 113
116 	/*
117 	 * Round dt away from zero to 47 bits.  Since we don't trust the 47,
118 	 * add 2 47-bit ulps instead of 1 to round up.  Rounding is slow and
119 	 * might be avoidable in this case, since on most machines dt will
120 	 * have been evaluated in 53-bit precision and the technical reasons
121 	 * for rounding up might not apply to either case in cbrtl() since
122 	 * dt is much more accurate than needed.
123 	 */
124 	t = dt + 0x2.0p-46 + 0x1.0p60L - 0x1.0p60;
125 #else
126 #error "Unsupported long double format"
127 #endif
128 
129 	/*
130      	 * Final step Newton iteration to 64 or 113 bits with
131 	 * error < 0.667 ulps
132 	 */
133 	s=t*t;				/* t*t is exact */
134 	r=x/s;				/* error <= 0.5 ulps; |r| < |t| */
135 	w=t+t;				/* t+t is exact */
136 	r=(r-t)/(w+r);			/* r-t is exact; w+r ~= 3*t */
137 	t=t+t*r;			/* error <= (0.5 + 0.5/3) * ulp */
138 
139 	t *= v.e;
140 	RETURNI(t);
141 }
142