1 /* 2 * ==================================================== 3 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. 4 * 5 * Developed at SunPro, a Sun Microsystems, Inc. business. 6 * Permission to use, copy, modify, and distribute this 7 * software is freely granted, provided that this notice 8 * is preserved. 9 * ==================================================== 10 * 11 * Optimized by Bruce D. Evans. 12 */ 13 14 #include <float.h> 15 #include "math.h" 16 #include "math_private.h" 17 18 /* cbrt(x) 19 * Return cube root of x 20 */ 21 static const u_int32_t 22 B1 = 715094163, /* B1 = (1023-1023/3-0.03306235651)*2**20 */ 23 B2 = 696219795; /* B2 = (1023-1023/3-54/3-0.03306235651)*2**20 */ 24 25 /* |1/cbrt(x) - p(x)| < 2**-23.5 (~[-7.93e-8, 7.929e-8]). */ 26 static const double 27 P0 = 1.87595182427177009643, /* 0x3ffe03e6, 0x0f61e692 */ 28 P1 = -1.88497979543377169875, /* 0xbffe28e0, 0x92f02420 */ 29 P2 = 1.621429720105354466140, /* 0x3ff9f160, 0x4a49d6c2 */ 30 P3 = -0.758397934778766047437, /* 0xbfe844cb, 0xbee751d9 */ 31 P4 = 0.145996192886612446982; /* 0x3fc2b000, 0xd4e4edd7 */ 32 33 double 34 cbrt(double x) 35 { 36 int32_t hx; 37 union { 38 double value; 39 uint64_t bits; 40 } u; 41 double r,s,t=0.0,w; 42 u_int32_t sign; 43 u_int32_t high,low; 44 45 EXTRACT_WORDS(hx,low,x); 46 sign=hx&0x80000000; /* sign= sign(x) */ 47 hx ^=sign; 48 if(hx>=0x7ff00000) return(x+x); /* cbrt(NaN,INF) is itself */ 49 50 /* 51 * Rough cbrt to 5 bits: 52 * cbrt(2**e*(1+m) ~= 2**(e/3)*(1+(e%3+m)/3) 53 * where e is integral and >= 0, m is real and in [0, 1), and "/" and 54 * "%" are integer division and modulus with rounding towards minus 55 * infinity. The RHS is always >= the LHS and has a maximum relative 56 * error of about 1 in 16. Adding a bias of -0.03306235651 to the 57 * (e%3+m)/3 term reduces the error to about 1 in 32. With the IEEE 58 * floating point representation, for finite positive normal values, 59 * ordinary integer division of the value in bits magically gives 60 * almost exactly the RHS of the above provided we first subtract the 61 * exponent bias (1023 for doubles) and later add it back. We do the 62 * subtraction virtually to keep e >= 0 so that ordinary integer 63 * division rounds towards minus infinity; this is also efficient. 64 */ 65 if(hx<0x00100000) { /* zero or subnormal? */ 66 if((hx|low)==0) 67 return(x); /* cbrt(0) is itself */ 68 SET_HIGH_WORD(t,0x43500000); /* set t= 2**54 */ 69 t*=x; 70 GET_HIGH_WORD(high,t); 71 INSERT_WORDS(t,sign|((high&0x7fffffff)/3+B2),0); 72 } else 73 INSERT_WORDS(t,sign|(hx/3+B1),0); 74 75 /* 76 * New cbrt to 23 bits: 77 * cbrt(x) = t*cbrt(x/t**3) ~= t*P(t**3/x) 78 * where P(r) is a polynomial of degree 4 that approximates 1/cbrt(r) 79 * to within 2**-23.5 when |r - 1| < 1/10. The rough approximation 80 * has produced t such than |t/cbrt(x) - 1| ~< 1/32, and cubing this 81 * gives us bounds for r = t**3/x. 82 * 83 * Try to optimize for parallel evaluation as in k_tanf.c. 84 */ 85 r=(t*t)*(t/x); 86 t=t*((P0+r*(P1+r*P2))+((r*r)*r)*(P3+r*P4)); 87 88 /* 89 * Round t away from zero to 23 bits (sloppily except for ensuring that 90 * the result is larger in magnitude than cbrt(x) but not much more than 91 * 2 23-bit ulps larger). With rounding towards zero, the error bound 92 * would be ~5/6 instead of ~4/6. With a maximum error of 2 23-bit ulps 93 * in the rounded t, the infinite-precision error in the Newton 94 * approximation barely affects third digit in the final error 95 * 0.667; the error in the rounded t can be up to about 3 23-bit ulps 96 * before the final error is larger than 0.667 ulps. 97 */ 98 u.value=t; 99 u.bits=(u.bits+0x80000000)&0xffffffffc0000000ULL; 100 t=u.value; 101 102 /* one step Newton iteration to 53 bits with error < 0.667 ulps */ 103 s=t*t; /* t*t is exact */ 104 r=x/s; /* error <= 0.5 ulps; |r| < |t| */ 105 w=t+t; /* t+t is exact */ 106 r=(r-t)/(w+r); /* r-t is exact; w+r ~= 3*t */ 107 t=t+t*r; /* error <= (0.5 + 0.5/3) * ulp */ 108 109 return(t); 110 } 111 112 #if (LDBL_MANT_DIG == 53) 113 __weak_reference(cbrt, cbrtl); 114 #endif 115