xref: /freebsd/lib/msun/src/s_cbrt.c (revision 7d5a4821ba24212986ce8babb8b6e0e3a1d5f82a)
1 /* @(#)s_cbrt.c 5.1 93/09/24 */
2 /*
3  * ====================================================
4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5  *
6  * Developed at SunPro, a Sun Microsystems, Inc. business.
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  */
12 
13 #ifndef lint
14 static char rcsid[] = "$FreeBSD$";
15 #endif
16 
17 #include "math.h"
18 #include "math_private.h"
19 
20 /* cbrt(x)
21  * Return cube root of x
22  */
23 static const u_int32_t
24 	B1 = 715094163, /* B1 = (1023-1023/3-0.03306235651)*2**20 */
25 	B2 = 696219795; /* B2 = (1023-1023/3-54/3-0.03306235651)*2**20 */
26 
27 static const double
28 C =  5.42857142857142815906e-01, /* 19/35     = 0x3FE15F15, 0xF15F15F1 */
29 D = -7.05306122448979611050e-01, /* -864/1225 = 0xBFE691DE, 0x2532C834 */
30 E =  1.41428571428571436819e+00, /* 99/70     = 0x3FF6A0EA, 0x0EA0EA0F */
31 F =  1.60714285714285720630e+00, /* 45/28     = 0x3FF9B6DB, 0x6DB6DB6E */
32 G =  3.57142857142857150787e-01; /* 5/14      = 0x3FD6DB6D, 0xB6DB6DB7 */
33 
34 double
35 cbrt(double x)
36 {
37 	int32_t	hx;
38 	double r,s,t=0.0,w;
39 	u_int32_t sign;
40 	u_int32_t high,low;
41 
42 	GET_HIGH_WORD(hx,x);
43 	sign=hx&0x80000000; 		/* sign= sign(x) */
44 	hx  ^=sign;
45 	if(hx>=0x7ff00000) return(x+x); /* cbrt(NaN,INF) is itself */
46 	GET_LOW_WORD(low,x);
47 	if((hx|low)==0)
48 	    return(x);		/* cbrt(0) is itself */
49 
50 	SET_HIGH_WORD(x,hx);	/* x <- |x| */
51     /*
52      * Rough cbrt to 5 bits:
53      *    cbrt(2**e*(1+m) ~= 2**(e/3)*(1+(e%3+m)/3)
54      * where e is integral and >= 0, m is real and in [0, 1), and "/" and
55      * "%" are integer division and modulus with rounding towards minus
56      * infinity.  The RHS is always >= the LHS and has a maximum relative
57      * error of about 1 in 16.  Adding a bias of -0.03306235651 to the
58      * (e%3+m)/3 term reduces the error to about 1 in 32. With the IEEE
59      * floating point representation, for finite positive normal values,
60      * ordinary integer divison of the value in bits magically gives
61      * almost exactly the RHS of the above provided we first subtract the
62      * exponent bias (1023 for doubles) and later add it back.  We do the
63      * subtraction virtually to keep e >= 0 so that ordinary integer
64      * division rounds towards minus infinity; this is also efficient.
65      */
66 	if(hx<0x00100000) { 		/* subnormal number */
67 	    SET_HIGH_WORD(t,0x43500000); /* set t= 2**54 */
68 	    t*=x;
69 	    GET_HIGH_WORD(high,t);
70 	    SET_HIGH_WORD(t,high/3+B2);
71 	} else
72 	    SET_HIGH_WORD(t,hx/3+B1);
73 
74     /* new cbrt to 23 bits; may be implemented in single precision */
75 	r=t*t/x;
76 	s=C+r*t;
77 	t*=G+F/(s+E+D/s);
78 
79     /* chop t to 20 bits and make it larger than cbrt(x) */
80 	GET_HIGH_WORD(high,t);
81 	INSERT_WORDS(t,high+0x00000001,0);
82 
83     /* one step Newton iteration to 53 bits with error less than 0.667 ulps */
84 	s=t*t;		/* t*t is exact */
85 	r=x/s;
86 	w=t+t;
87 	r=(r-t)/(w+r);	/* r-t is exact */
88 	t=t+t*r;
89 
90     /* restore the sign bit */
91 	GET_HIGH_WORD(high,t);
92 	SET_HIGH_WORD(t,high|sign);
93 	return(t);
94 }
95