1 /* @(#)s_cbrt.c 5.1 93/09/24 */ 2 /* 3 * ==================================================== 4 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. 5 * 6 * Developed at SunPro, a Sun Microsystems, Inc. business. 7 * Permission to use, copy, modify, and distribute this 8 * software is freely granted, provided that this notice 9 * is preserved. 10 * ==================================================== 11 * 12 * Optimized by Bruce D. Evans. 13 */ 14 15 #ifndef lint 16 static char rcsid[] = "$FreeBSD$"; 17 #endif 18 19 #include "math.h" 20 #include "math_private.h" 21 22 /* cbrt(x) 23 * Return cube root of x 24 */ 25 static const u_int32_t 26 B1 = 715094163, /* B1 = (1023-1023/3-0.03306235651)*2**20 */ 27 B2 = 696219795; /* B2 = (1023-1023/3-54/3-0.03306235651)*2**20 */ 28 29 /* |1/cbrt(x) - p(x)| < 2**-23.5 (~[-7.93e-8, 7.929e-8]). */ 30 static const double 31 P0 = 1.87595182427177009643, /* 0x3ffe03e6, 0x0f61e692 */ 32 P1 = -1.88497979543377169875, /* 0xbffe28e0, 0x92f02420 */ 33 P2 = 1.621429720105354466140, /* 0x3ff9f160, 0x4a49d6c2 */ 34 P3 = -0.758397934778766047437, /* 0xbfe844cb, 0xbee751d9 */ 35 P4 = 0.145996192886612446982; /* 0x3fc2b000, 0xd4e4edd7 */ 36 37 double 38 cbrt(double x) 39 { 40 int32_t hx; 41 union { 42 double value; 43 uint64_t bits; 44 } u; 45 double r,s,t=0.0,w; 46 u_int32_t sign; 47 u_int32_t high,low; 48 49 EXTRACT_WORDS(hx,low,x); 50 sign=hx&0x80000000; /* sign= sign(x) */ 51 hx ^=sign; 52 if(hx>=0x7ff00000) return(x+x); /* cbrt(NaN,INF) is itself */ 53 54 /* 55 * Rough cbrt to 5 bits: 56 * cbrt(2**e*(1+m) ~= 2**(e/3)*(1+(e%3+m)/3) 57 * where e is integral and >= 0, m is real and in [0, 1), and "/" and 58 * "%" are integer division and modulus with rounding towards minus 59 * infinity. The RHS is always >= the LHS and has a maximum relative 60 * error of about 1 in 16. Adding a bias of -0.03306235651 to the 61 * (e%3+m)/3 term reduces the error to about 1 in 32. With the IEEE 62 * floating point representation, for finite positive normal values, 63 * ordinary integer divison of the value in bits magically gives 64 * almost exactly the RHS of the above provided we first subtract the 65 * exponent bias (1023 for doubles) and later add it back. We do the 66 * subtraction virtually to keep e >= 0 so that ordinary integer 67 * division rounds towards minus infinity; this is also efficient. 68 */ 69 if(hx<0x00100000) { /* zero or subnormal? */ 70 if((hx|low)==0) 71 return(x); /* cbrt(0) is itself */ 72 SET_HIGH_WORD(t,0x43500000); /* set t= 2**54 */ 73 t*=x; 74 GET_HIGH_WORD(high,t); 75 INSERT_WORDS(t,sign|((high&0x7fffffff)/3+B2),0); 76 } else 77 INSERT_WORDS(t,sign|(hx/3+B1),0); 78 79 /* 80 * New cbrt to 23 bits: 81 * cbrt(x) = t*cbrt(x/t**3) ~= t*P(t**3/x) 82 * where P(r) is a polynomial of degree 4 that approximates 1/cbrt(r) 83 * to within 2**-23.5 when |r - 1| < 1/10. The rough approximation 84 * has produced t such than |t/cbrt(x) - 1| ~< 1/32, and cubing this 85 * gives us bounds for r = t**3/x. 86 * 87 * Try to optimize for parallel evaluation as in k_tanf.c. 88 */ 89 r=(t*t)*(t/x); 90 t=t*((P0+r*(P1+r*P2))+((r*r)*r)*(P3+r*P4)); 91 92 /* 93 * Round t away from zero to 23 bits (sloppily except for ensuring that 94 * the result is larger in magnitude than cbrt(x) but not much more than 95 * 2 23-bit ulps larger). With rounding towards zero, the error bound 96 * would be ~5/6 instead of ~4/6. With a maximum error of 2 23-bit ulps 97 * in the rounded t, the infinite-precision error in the Newton 98 * approximation barely affects third digit in the the final error 99 * 0.667; the error in the rounded t can be up to about 3 23-bit ulps 100 * before the final error is larger than 0.667 ulps. 101 */ 102 u.value=t; 103 u.bits=(u.bits+0x80000000)&0xffffffffc0000000ULL; 104 t=u.value; 105 106 /* one step Newton iteration to 53 bits with error < 0.667 ulps */ 107 s=t*t; /* t*t is exact */ 108 r=x/s; /* error <= 0.5 ulps; |r| < |t| */ 109 w=t+t; /* t+t is exact */ 110 r=(r-t)/(w+r); /* r-t is exact; w+r ~= 3*t */ 111 t=t+t*r; /* error <= 0.5 + 0.5/3 + epsilon */ 112 113 return(t); 114 } 115