xref: /freebsd/lib/msun/src/s_cbrt.c (revision 0dd5a5603e7a33d976f8e6015620bbc79839c609)
13a8617a8SJordan K. Hubbard /*
23a8617a8SJordan K. Hubbard  * ====================================================
33a8617a8SJordan K. Hubbard  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
43a8617a8SJordan K. Hubbard  *
53a8617a8SJordan K. Hubbard  * Developed at SunPro, a Sun Microsystems, Inc. business.
63a8617a8SJordan K. Hubbard  * Permission to use, copy, modify, and distribute this
73a8617a8SJordan K. Hubbard  * software is freely granted, provided that this notice
83a8617a8SJordan K. Hubbard  * is preserved.
93a8617a8SJordan K. Hubbard  * ====================================================
10ec761d75SBruce Evans  *
11ec761d75SBruce Evans  * Optimized by Bruce D. Evans.
123a8617a8SJordan K. Hubbard  */
133a8617a8SJordan K. Hubbard 
14003fdafbSJustin Hibbits #include <float.h>
153a8617a8SJordan K. Hubbard #include "math.h"
163a8617a8SJordan K. Hubbard #include "math_private.h"
173a8617a8SJordan K. Hubbard 
183a8617a8SJordan K. Hubbard /* cbrt(x)
193a8617a8SJordan K. Hubbard  * Return cube root of x
203a8617a8SJordan K. Hubbard  */
213a8617a8SJordan K. Hubbard static const u_int32_t
22af7f9913SBruce Evans 	B1 = 715094163, /* B1 = (1023-1023/3-0.03306235651)*2**20 */
23af7f9913SBruce Evans 	B2 = 696219795; /* B2 = (1023-1023/3-54/3-0.03306235651)*2**20 */
243a8617a8SJordan K. Hubbard 
25c5964538SBruce Evans /* |1/cbrt(x) - p(x)| < 2**-23.5 (~[-7.93e-8, 7.929e-8]). */
263a8617a8SJordan K. Hubbard static const double
27c5964538SBruce Evans P0 =  1.87595182427177009643,		/* 0x3ffe03e6, 0x0f61e692 */
28c5964538SBruce Evans P1 = -1.88497979543377169875,		/* 0xbffe28e0, 0x92f02420 */
29c5964538SBruce Evans P2 =  1.621429720105354466140,		/* 0x3ff9f160, 0x4a49d6c2 */
30c5964538SBruce Evans P3 = -0.758397934778766047437,		/* 0xbfe844cb, 0xbee751d9 */
31c5964538SBruce Evans P4 =  0.145996192886612446982;		/* 0x3fc2b000, 0xd4e4edd7 */
323a8617a8SJordan K. Hubbard 
3359b19ff1SAlfred Perlstein double
cbrt(double x)3459b19ff1SAlfred Perlstein cbrt(double x)
353a8617a8SJordan K. Hubbard {
363a8617a8SJordan K. Hubbard 	int32_t	hx;
37ce804bffSBruce Evans 	union {
38ce804bffSBruce Evans 	    double value;
39ce804bffSBruce Evans 	    uint64_t bits;
40ce804bffSBruce Evans 	} u;
413a8617a8SJordan K. Hubbard 	double r,s,t=0.0,w;
423a8617a8SJordan K. Hubbard 	u_int32_t sign;
433a8617a8SJordan K. Hubbard 	u_int32_t high,low;
443a8617a8SJordan K. Hubbard 
455776f433SBruce Evans 	EXTRACT_WORDS(hx,low,x);
463a8617a8SJordan K. Hubbard 	sign=hx&0x80000000; 		/* sign= sign(x) */
473a8617a8SJordan K. Hubbard 	hx  ^=sign;
483a8617a8SJordan K. Hubbard 	if(hx>=0x7ff00000) return(x+x); /* cbrt(NaN,INF) is itself */
493a8617a8SJordan K. Hubbard 
50af7f9913SBruce Evans     /*
51af7f9913SBruce Evans      * Rough cbrt to 5 bits:
52af7f9913SBruce Evans      *    cbrt(2**e*(1+m) ~= 2**(e/3)*(1+(e%3+m)/3)
53af7f9913SBruce Evans      * where e is integral and >= 0, m is real and in [0, 1), and "/" and
54af7f9913SBruce Evans      * "%" are integer division and modulus with rounding towards minus
55af7f9913SBruce Evans      * infinity.  The RHS is always >= the LHS and has a maximum relative
56af7f9913SBruce Evans      * error of about 1 in 16.  Adding a bias of -0.03306235651 to the
57af7f9913SBruce Evans      * (e%3+m)/3 term reduces the error to about 1 in 32. With the IEEE
58af7f9913SBruce Evans      * floating point representation, for finite positive normal values,
5975f46cf6SPedro F. Giffuni      * ordinary integer division of the value in bits magically gives
60af7f9913SBruce Evans      * almost exactly the RHS of the above provided we first subtract the
61af7f9913SBruce Evans      * exponent bias (1023 for doubles) and later add it back.  We do the
62af7f9913SBruce Evans      * subtraction virtually to keep e >= 0 so that ordinary integer
63af7f9913SBruce Evans      * division rounds towards minus infinity; this is also efficient.
64af7f9913SBruce Evans      */
655776f433SBruce Evans 	if(hx<0x00100000) { 		/* zero or subnormal? */
665776f433SBruce Evans 	    if((hx|low)==0)
675776f433SBruce Evans 		return(x);		/* cbrt(0) is itself */
687d5a4821SBruce Evans 	    SET_HIGH_WORD(t,0x43500000); /* set t= 2**54 */
697d5a4821SBruce Evans 	    t*=x;
707d5a4821SBruce Evans 	    GET_HIGH_WORD(high,t);
715776f433SBruce Evans 	    INSERT_WORDS(t,sign|((high&0x7fffffff)/3+B2),0);
727d5a4821SBruce Evans 	} else
735776f433SBruce Evans 	    INSERT_WORDS(t,sign|(hx/3+B1),0);
743a8617a8SJordan K. Hubbard 
757aac169eSBruce Evans     /*
76c5964538SBruce Evans      * New cbrt to 23 bits:
77c5964538SBruce Evans      *    cbrt(x) = t*cbrt(x/t**3) ~= t*P(t**3/x)
78c5964538SBruce Evans      * where P(r) is a polynomial of degree 4 that approximates 1/cbrt(r)
79c5964538SBruce Evans      * to within 2**-23.5 when |r - 1| < 1/10.  The rough approximation
80c5964538SBruce Evans      * has produced t such than |t/cbrt(x) - 1| ~< 1/32, and cubing this
81c5964538SBruce Evans      * gives us bounds for r = t**3/x.
82c5964538SBruce Evans      *
83c5964538SBruce Evans      * Try to optimize for parallel evaluation as in k_tanf.c.
847aac169eSBruce Evans      */
85c5964538SBruce Evans 	r=(t*t)*(t/x);
86c5964538SBruce Evans 	t=t*((P0+r*(P1+r*P2))+((r*r)*r)*(P3+r*P4));
873a8617a8SJordan K. Hubbard 
88ce804bffSBruce Evans     /*
89c5964538SBruce Evans      * Round t away from zero to 23 bits (sloppily except for ensuring that
90ce804bffSBruce Evans      * the result is larger in magnitude than cbrt(x) but not much more than
91c5964538SBruce Evans      * 2 23-bit ulps larger).  With rounding towards zero, the error bound
92c5964538SBruce Evans      * would be ~5/6 instead of ~4/6.  With a maximum error of 2 23-bit ulps
93ce804bffSBruce Evans      * in the rounded t, the infinite-precision error in the Newton
946bccea7cSRebecca Cran      * approximation barely affects third digit in the final error
95c5964538SBruce Evans      * 0.667; the error in the rounded t can be up to about 3 23-bit ulps
96ce804bffSBruce Evans      * before the final error is larger than 0.667 ulps.
97ce804bffSBruce Evans      */
98ce804bffSBruce Evans 	u.value=t;
99c5964538SBruce Evans 	u.bits=(u.bits+0x80000000)&0xffffffffc0000000ULL;
100ce804bffSBruce Evans 	t=u.value;
1013a8617a8SJordan K. Hubbard 
102ce804bffSBruce Evans     /* one step Newton iteration to 53 bits with error < 0.667 ulps */
1033a8617a8SJordan K. Hubbard 	s=t*t;				/* t*t is exact */
104ce804bffSBruce Evans 	r=x/s;				/* error <= 0.5 ulps; |r| < |t| */
105ce804bffSBruce Evans 	w=t+t;				/* t+t is exact */
106ce804bffSBruce Evans 	r=(r-t)/(w+r);			/* r-t is exact; w+r ~= 3*t */
107*369ea052SSteve Kargl 	t=t+t*r;			/* error <= (0.5 + 0.5/3) * ulp */
1083a8617a8SJordan K. Hubbard 
1093a8617a8SJordan K. Hubbard 	return(t);
1103a8617a8SJordan K. Hubbard }
111dfe5233bSSteve Kargl 
112dfe5233bSSteve Kargl #if (LDBL_MANT_DIG == 53)
113dfe5233bSSteve Kargl __weak_reference(cbrt, cbrtl);
114dfe5233bSSteve Kargl #endif
115