13a8617a8SJordan K. Hubbard /*
23a8617a8SJordan K. Hubbard * ====================================================
33a8617a8SJordan K. Hubbard * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
43a8617a8SJordan K. Hubbard *
53a8617a8SJordan K. Hubbard * Developed at SunPro, a Sun Microsystems, Inc. business.
63a8617a8SJordan K. Hubbard * Permission to use, copy, modify, and distribute this
73a8617a8SJordan K. Hubbard * software is freely granted, provided that this notice
83a8617a8SJordan K. Hubbard * is preserved.
93a8617a8SJordan K. Hubbard * ====================================================
10ec761d75SBruce Evans *
11ec761d75SBruce Evans * Optimized by Bruce D. Evans.
123a8617a8SJordan K. Hubbard */
133a8617a8SJordan K. Hubbard
14003fdafbSJustin Hibbits #include <float.h>
153a8617a8SJordan K. Hubbard #include "math.h"
163a8617a8SJordan K. Hubbard #include "math_private.h"
173a8617a8SJordan K. Hubbard
183a8617a8SJordan K. Hubbard /* cbrt(x)
193a8617a8SJordan K. Hubbard * Return cube root of x
203a8617a8SJordan K. Hubbard */
213a8617a8SJordan K. Hubbard static const u_int32_t
22af7f9913SBruce Evans B1 = 715094163, /* B1 = (1023-1023/3-0.03306235651)*2**20 */
23af7f9913SBruce Evans B2 = 696219795; /* B2 = (1023-1023/3-54/3-0.03306235651)*2**20 */
243a8617a8SJordan K. Hubbard
25c5964538SBruce Evans /* |1/cbrt(x) - p(x)| < 2**-23.5 (~[-7.93e-8, 7.929e-8]). */
263a8617a8SJordan K. Hubbard static const double
27c5964538SBruce Evans P0 = 1.87595182427177009643, /* 0x3ffe03e6, 0x0f61e692 */
28c5964538SBruce Evans P1 = -1.88497979543377169875, /* 0xbffe28e0, 0x92f02420 */
29c5964538SBruce Evans P2 = 1.621429720105354466140, /* 0x3ff9f160, 0x4a49d6c2 */
30c5964538SBruce Evans P3 = -0.758397934778766047437, /* 0xbfe844cb, 0xbee751d9 */
31c5964538SBruce Evans P4 = 0.145996192886612446982; /* 0x3fc2b000, 0xd4e4edd7 */
323a8617a8SJordan K. Hubbard
3359b19ff1SAlfred Perlstein double
cbrt(double x)3459b19ff1SAlfred Perlstein cbrt(double x)
353a8617a8SJordan K. Hubbard {
363a8617a8SJordan K. Hubbard int32_t hx;
37ce804bffSBruce Evans union {
38ce804bffSBruce Evans double value;
39ce804bffSBruce Evans uint64_t bits;
40ce804bffSBruce Evans } u;
413a8617a8SJordan K. Hubbard double r,s,t=0.0,w;
423a8617a8SJordan K. Hubbard u_int32_t sign;
433a8617a8SJordan K. Hubbard u_int32_t high,low;
443a8617a8SJordan K. Hubbard
455776f433SBruce Evans EXTRACT_WORDS(hx,low,x);
463a8617a8SJordan K. Hubbard sign=hx&0x80000000; /* sign= sign(x) */
473a8617a8SJordan K. Hubbard hx ^=sign;
483a8617a8SJordan K. Hubbard if(hx>=0x7ff00000) return(x+x); /* cbrt(NaN,INF) is itself */
493a8617a8SJordan K. Hubbard
50af7f9913SBruce Evans /*
51af7f9913SBruce Evans * Rough cbrt to 5 bits:
52af7f9913SBruce Evans * cbrt(2**e*(1+m) ~= 2**(e/3)*(1+(e%3+m)/3)
53af7f9913SBruce Evans * where e is integral and >= 0, m is real and in [0, 1), and "/" and
54af7f9913SBruce Evans * "%" are integer division and modulus with rounding towards minus
55af7f9913SBruce Evans * infinity. The RHS is always >= the LHS and has a maximum relative
56af7f9913SBruce Evans * error of about 1 in 16. Adding a bias of -0.03306235651 to the
57af7f9913SBruce Evans * (e%3+m)/3 term reduces the error to about 1 in 32. With the IEEE
58af7f9913SBruce Evans * floating point representation, for finite positive normal values,
5975f46cf6SPedro F. Giffuni * ordinary integer division of the value in bits magically gives
60af7f9913SBruce Evans * almost exactly the RHS of the above provided we first subtract the
61af7f9913SBruce Evans * exponent bias (1023 for doubles) and later add it back. We do the
62af7f9913SBruce Evans * subtraction virtually to keep e >= 0 so that ordinary integer
63af7f9913SBruce Evans * division rounds towards minus infinity; this is also efficient.
64af7f9913SBruce Evans */
655776f433SBruce Evans if(hx<0x00100000) { /* zero or subnormal? */
665776f433SBruce Evans if((hx|low)==0)
675776f433SBruce Evans return(x); /* cbrt(0) is itself */
687d5a4821SBruce Evans SET_HIGH_WORD(t,0x43500000); /* set t= 2**54 */
697d5a4821SBruce Evans t*=x;
707d5a4821SBruce Evans GET_HIGH_WORD(high,t);
715776f433SBruce Evans INSERT_WORDS(t,sign|((high&0x7fffffff)/3+B2),0);
727d5a4821SBruce Evans } else
735776f433SBruce Evans INSERT_WORDS(t,sign|(hx/3+B1),0);
743a8617a8SJordan K. Hubbard
757aac169eSBruce Evans /*
76c5964538SBruce Evans * New cbrt to 23 bits:
77c5964538SBruce Evans * cbrt(x) = t*cbrt(x/t**3) ~= t*P(t**3/x)
78c5964538SBruce Evans * where P(r) is a polynomial of degree 4 that approximates 1/cbrt(r)
79c5964538SBruce Evans * to within 2**-23.5 when |r - 1| < 1/10. The rough approximation
80c5964538SBruce Evans * has produced t such than |t/cbrt(x) - 1| ~< 1/32, and cubing this
81c5964538SBruce Evans * gives us bounds for r = t**3/x.
82c5964538SBruce Evans *
83c5964538SBruce Evans * Try to optimize for parallel evaluation as in k_tanf.c.
847aac169eSBruce Evans */
85c5964538SBruce Evans r=(t*t)*(t/x);
86c5964538SBruce Evans t=t*((P0+r*(P1+r*P2))+((r*r)*r)*(P3+r*P4));
873a8617a8SJordan K. Hubbard
88ce804bffSBruce Evans /*
89c5964538SBruce Evans * Round t away from zero to 23 bits (sloppily except for ensuring that
90ce804bffSBruce Evans * the result is larger in magnitude than cbrt(x) but not much more than
91c5964538SBruce Evans * 2 23-bit ulps larger). With rounding towards zero, the error bound
92c5964538SBruce Evans * would be ~5/6 instead of ~4/6. With a maximum error of 2 23-bit ulps
93ce804bffSBruce Evans * in the rounded t, the infinite-precision error in the Newton
946bccea7cSRebecca Cran * approximation barely affects third digit in the final error
95c5964538SBruce Evans * 0.667; the error in the rounded t can be up to about 3 23-bit ulps
96ce804bffSBruce Evans * before the final error is larger than 0.667 ulps.
97ce804bffSBruce Evans */
98ce804bffSBruce Evans u.value=t;
99c5964538SBruce Evans u.bits=(u.bits+0x80000000)&0xffffffffc0000000ULL;
100ce804bffSBruce Evans t=u.value;
1013a8617a8SJordan K. Hubbard
102ce804bffSBruce Evans /* one step Newton iteration to 53 bits with error < 0.667 ulps */
1033a8617a8SJordan K. Hubbard s=t*t; /* t*t is exact */
104ce804bffSBruce Evans r=x/s; /* error <= 0.5 ulps; |r| < |t| */
105ce804bffSBruce Evans w=t+t; /* t+t is exact */
106ce804bffSBruce Evans r=(r-t)/(w+r); /* r-t is exact; w+r ~= 3*t */
107*369ea052SSteve Kargl t=t+t*r; /* error <= (0.5 + 0.5/3) * ulp */
1083a8617a8SJordan K. Hubbard
1093a8617a8SJordan K. Hubbard return(t);
1103a8617a8SJordan K. Hubbard }
111dfe5233bSSteve Kargl
112dfe5233bSSteve Kargl #if (LDBL_MANT_DIG == 53)
113dfe5233bSSteve Kargl __weak_reference(cbrt, cbrtl);
114dfe5233bSSteve Kargl #endif
115