xref: /freebsd/lib/msun/src/math_private.h (revision 94942af266ac119ede0ca836f9aa5a5ac0582938)
1 /*
2  * ====================================================
3  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
4  *
5  * Developed at SunPro, a Sun Microsystems, Inc. business.
6  * Permission to use, copy, modify, and distribute this
7  * software is freely granted, provided that this notice
8  * is preserved.
9  * ====================================================
10  */
11 
12 /*
13  * from: @(#)fdlibm.h 5.1 93/09/24
14  * $FreeBSD$
15  */
16 
17 #ifndef _MATH_PRIVATE_H_
18 #define	_MATH_PRIVATE_H_
19 
20 #include <sys/types.h>
21 #include <machine/endian.h>
22 
23 /*
24  * The original fdlibm code used statements like:
25  *	n0 = ((*(int*)&one)>>29)^1;		* index of high word *
26  *	ix0 = *(n0+(int*)&x);			* high word of x *
27  *	ix1 = *((1-n0)+(int*)&x);		* low word of x *
28  * to dig two 32 bit words out of the 64 bit IEEE floating point
29  * value.  That is non-ANSI, and, moreover, the gcc instruction
30  * scheduler gets it wrong.  We instead use the following macros.
31  * Unlike the original code, we determine the endianness at compile
32  * time, not at run time; I don't see much benefit to selecting
33  * endianness at run time.
34  */
35 
36 /*
37  * A union which permits us to convert between a double and two 32 bit
38  * ints.
39  */
40 
41 #if BYTE_ORDER == BIG_ENDIAN
42 
43 typedef union
44 {
45   double value;
46   struct
47   {
48     u_int32_t msw;
49     u_int32_t lsw;
50   } parts;
51 } ieee_double_shape_type;
52 
53 #endif
54 
55 #if BYTE_ORDER == LITTLE_ENDIAN
56 
57 typedef union
58 {
59   double value;
60   struct
61   {
62     u_int32_t lsw;
63     u_int32_t msw;
64   } parts;
65 } ieee_double_shape_type;
66 
67 #endif
68 
69 /* Get two 32 bit ints from a double.  */
70 
71 #define EXTRACT_WORDS(ix0,ix1,d)				\
72 do {								\
73   ieee_double_shape_type ew_u;					\
74   ew_u.value = (d);						\
75   (ix0) = ew_u.parts.msw;					\
76   (ix1) = ew_u.parts.lsw;					\
77 } while (0)
78 
79 /* Get the more significant 32 bit int from a double.  */
80 
81 #define GET_HIGH_WORD(i,d)					\
82 do {								\
83   ieee_double_shape_type gh_u;					\
84   gh_u.value = (d);						\
85   (i) = gh_u.parts.msw;						\
86 } while (0)
87 
88 /* Get the less significant 32 bit int from a double.  */
89 
90 #define GET_LOW_WORD(i,d)					\
91 do {								\
92   ieee_double_shape_type gl_u;					\
93   gl_u.value = (d);						\
94   (i) = gl_u.parts.lsw;						\
95 } while (0)
96 
97 /* Set a double from two 32 bit ints.  */
98 
99 #define INSERT_WORDS(d,ix0,ix1)					\
100 do {								\
101   ieee_double_shape_type iw_u;					\
102   iw_u.parts.msw = (ix0);					\
103   iw_u.parts.lsw = (ix1);					\
104   (d) = iw_u.value;						\
105 } while (0)
106 
107 /* Set the more significant 32 bits of a double from an int.  */
108 
109 #define SET_HIGH_WORD(d,v)					\
110 do {								\
111   ieee_double_shape_type sh_u;					\
112   sh_u.value = (d);						\
113   sh_u.parts.msw = (v);						\
114   (d) = sh_u.value;						\
115 } while (0)
116 
117 /* Set the less significant 32 bits of a double from an int.  */
118 
119 #define SET_LOW_WORD(d,v)					\
120 do {								\
121   ieee_double_shape_type sl_u;					\
122   sl_u.value = (d);						\
123   sl_u.parts.lsw = (v);						\
124   (d) = sl_u.value;						\
125 } while (0)
126 
127 /*
128  * A union which permits us to convert between a float and a 32 bit
129  * int.
130  */
131 
132 typedef union
133 {
134   float value;
135   /* FIXME: Assumes 32 bit int.  */
136   unsigned int word;
137 } ieee_float_shape_type;
138 
139 /* Get a 32 bit int from a float.  */
140 
141 #define GET_FLOAT_WORD(i,d)					\
142 do {								\
143   ieee_float_shape_type gf_u;					\
144   gf_u.value = (d);						\
145   (i) = gf_u.word;						\
146 } while (0)
147 
148 /* Set a float from a 32 bit int.  */
149 
150 #define SET_FLOAT_WORD(d,i)					\
151 do {								\
152   ieee_float_shape_type sf_u;					\
153   sf_u.word = (i);						\
154   (d) = sf_u.value;						\
155 } while (0)
156 
157 #ifdef _COMPLEX_H
158 /*
159  * Inline functions that can be used to construct complex values.
160  *
161  * The C99 standard intends x+I*y to be used for this, but x+I*y is
162  * currently unusable in general since gcc introduces many overflow,
163  * underflow, sign and efficiency bugs by rewriting I*y as
164  * (0.0+I)*(y+0.0*I) and laboriously computing the full complex product.
165  * In particular, I*Inf is corrupted to NaN+I*Inf, and I*-0 is corrupted
166  * to -0.0+I*0.0.
167  */
168 static __inline float complex
169 cpackf(float x, float y)
170 {
171 	float complex z;
172 
173 	__real__ z = x;
174 	__imag__ z = y;
175 	return (z);
176 }
177 
178 static __inline double complex
179 cpack(double x, double y)
180 {
181 	double complex z;
182 
183 	__real__ z = x;
184 	__imag__ z = y;
185 	return (z);
186 }
187 
188 static __inline long double complex
189 cpackl(long double x, long double y)
190 {
191 	long double complex z;
192 
193 	__real__ z = x;
194 	__imag__ z = y;
195 	return (z);
196 }
197 #endif /* _COMPLEX_H */
198 
199 /*
200  * ieee style elementary functions
201  *
202  * We rename functions here to improve other sources' diffability
203  * against fdlibm.
204  */
205 #define	__ieee754_sqrt	sqrt
206 #define	__ieee754_acos	acos
207 #define	__ieee754_acosh	acosh
208 #define	__ieee754_log	log
209 #define	__ieee754_atanh	atanh
210 #define	__ieee754_asin	asin
211 #define	__ieee754_atan2	atan2
212 #define	__ieee754_exp	exp
213 #define	__ieee754_cosh	cosh
214 #define	__ieee754_fmod	fmod
215 #define	__ieee754_pow	pow
216 #define	__ieee754_lgamma lgamma
217 #define	__ieee754_gamma	gamma
218 #define	__ieee754_lgamma_r lgamma_r
219 #define	__ieee754_gamma_r gamma_r
220 #define	__ieee754_log10	log10
221 #define	__ieee754_sinh	sinh
222 #define	__ieee754_hypot	hypot
223 #define	__ieee754_j0	j0
224 #define	__ieee754_j1	j1
225 #define	__ieee754_y0	y0
226 #define	__ieee754_y1	y1
227 #define	__ieee754_jn	jn
228 #define	__ieee754_yn	yn
229 #define	__ieee754_remainder remainder
230 #define	__ieee754_scalb	scalb
231 #define	__ieee754_sqrtf	sqrtf
232 #define	__ieee754_acosf	acosf
233 #define	__ieee754_acoshf acoshf
234 #define	__ieee754_logf	logf
235 #define	__ieee754_atanhf atanhf
236 #define	__ieee754_asinf	asinf
237 #define	__ieee754_atan2f atan2f
238 #define	__ieee754_expf	expf
239 #define	__ieee754_coshf	coshf
240 #define	__ieee754_fmodf	fmodf
241 #define	__ieee754_powf	powf
242 #define	__ieee754_lgammaf lgammaf
243 #define	__ieee754_gammaf gammaf
244 #define	__ieee754_lgammaf_r lgammaf_r
245 #define	__ieee754_gammaf_r gammaf_r
246 #define	__ieee754_log10f log10f
247 #define	__ieee754_sinhf	sinhf
248 #define	__ieee754_hypotf hypotf
249 #define	__ieee754_j0f	j0f
250 #define	__ieee754_j1f	j1f
251 #define	__ieee754_y0f	y0f
252 #define	__ieee754_y1f	y1f
253 #define	__ieee754_jnf	jnf
254 #define	__ieee754_ynf	ynf
255 #define	__ieee754_remainderf remainderf
256 #define	__ieee754_scalbf scalbf
257 
258 /* fdlibm kernel function */
259 int	__ieee754_rem_pio2(double,double*);
260 double	__kernel_sin(double,double,int);
261 double	__kernel_cos(double,double);
262 double	__kernel_tan(double,double,int);
263 int	__kernel_rem_pio2(double*,double*,int,int,int,const int*);
264 
265 /* float versions of fdlibm kernel functions */
266 int	__ieee754_rem_pio2f(float,float*);
267 float	__kernel_sindf(double);
268 float	__kernel_cosdf(double);
269 float	__kernel_tandf(double,int);
270 int	__kernel_rem_pio2f(float*,float*,int,int,int,const int*);
271 
272 #endif /* !_MATH_PRIVATE_H_ */
273