xref: /freebsd/lib/msun/src/math_private.h (revision 9336e0699bda8a301cd2bfa37106b6ec5e32012e)
1 /*
2  * ====================================================
3  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
4  *
5  * Developed at SunPro, a Sun Microsystems, Inc. business.
6  * Permission to use, copy, modify, and distribute this
7  * software is freely granted, provided that this notice
8  * is preserved.
9  * ====================================================
10  */
11 
12 /*
13  * from: @(#)fdlibm.h 5.1 93/09/24
14  * $FreeBSD$
15  */
16 
17 #ifndef _MATH_PRIVATE_H_
18 #define	_MATH_PRIVATE_H_
19 
20 #include <sys/types.h>
21 #include <machine/endian.h>
22 
23 /*
24  * The original fdlibm code used statements like:
25  *	n0 = ((*(int*)&one)>>29)^1;		* index of high word *
26  *	ix0 = *(n0+(int*)&x);			* high word of x *
27  *	ix1 = *((1-n0)+(int*)&x);		* low word of x *
28  * to dig two 32 bit words out of the 64 bit IEEE floating point
29  * value.  That is non-ANSI, and, moreover, the gcc instruction
30  * scheduler gets it wrong.  We instead use the following macros.
31  * Unlike the original code, we determine the endianness at compile
32  * time, not at run time; I don't see much benefit to selecting
33  * endianness at run time.
34  */
35 
36 /*
37  * A union which permits us to convert between a double and two 32 bit
38  * ints.
39  */
40 
41 #if BYTE_ORDER == BIG_ENDIAN
42 
43 typedef union
44 {
45   double value;
46   struct
47   {
48     u_int32_t msw;
49     u_int32_t lsw;
50   } parts;
51 } ieee_double_shape_type;
52 
53 #endif
54 
55 #if BYTE_ORDER == LITTLE_ENDIAN
56 
57 typedef union
58 {
59   double value;
60   struct
61   {
62     u_int32_t lsw;
63     u_int32_t msw;
64   } parts;
65 } ieee_double_shape_type;
66 
67 #endif
68 
69 /* Get two 32 bit ints from a double.  */
70 
71 #define EXTRACT_WORDS(ix0,ix1,d)				\
72 do {								\
73   ieee_double_shape_type ew_u;					\
74   ew_u.value = (d);						\
75   (ix0) = ew_u.parts.msw;					\
76   (ix1) = ew_u.parts.lsw;					\
77 } while (0)
78 
79 /* Get the more significant 32 bit int from a double.  */
80 
81 #define GET_HIGH_WORD(i,d)					\
82 do {								\
83   ieee_double_shape_type gh_u;					\
84   gh_u.value = (d);						\
85   (i) = gh_u.parts.msw;						\
86 } while (0)
87 
88 /* Get the less significant 32 bit int from a double.  */
89 
90 #define GET_LOW_WORD(i,d)					\
91 do {								\
92   ieee_double_shape_type gl_u;					\
93   gl_u.value = (d);						\
94   (i) = gl_u.parts.lsw;						\
95 } while (0)
96 
97 /* Set a double from two 32 bit ints.  */
98 
99 #define INSERT_WORDS(d,ix0,ix1)					\
100 do {								\
101   ieee_double_shape_type iw_u;					\
102   iw_u.parts.msw = (ix0);					\
103   iw_u.parts.lsw = (ix1);					\
104   (d) = iw_u.value;						\
105 } while (0)
106 
107 /* Set the more significant 32 bits of a double from an int.  */
108 
109 #define SET_HIGH_WORD(d,v)					\
110 do {								\
111   ieee_double_shape_type sh_u;					\
112   sh_u.value = (d);						\
113   sh_u.parts.msw = (v);						\
114   (d) = sh_u.value;						\
115 } while (0)
116 
117 /* Set the less significant 32 bits of a double from an int.  */
118 
119 #define SET_LOW_WORD(d,v)					\
120 do {								\
121   ieee_double_shape_type sl_u;					\
122   sl_u.value = (d);						\
123   sl_u.parts.lsw = (v);						\
124   (d) = sl_u.value;						\
125 } while (0)
126 
127 /*
128  * A union which permits us to convert between a float and a 32 bit
129  * int.
130  */
131 
132 typedef union
133 {
134   float value;
135   /* FIXME: Assumes 32 bit int.  */
136   unsigned int word;
137 } ieee_float_shape_type;
138 
139 /* Get a 32 bit int from a float.  */
140 
141 #define GET_FLOAT_WORD(i,d)					\
142 do {								\
143   ieee_float_shape_type gf_u;					\
144   gf_u.value = (d);						\
145   (i) = gf_u.word;						\
146 } while (0)
147 
148 /* Set a float from a 32 bit int.  */
149 
150 #define SET_FLOAT_WORD(d,i)					\
151 do {								\
152   ieee_float_shape_type sf_u;					\
153   sf_u.word = (i);						\
154   (d) = sf_u.value;						\
155 } while (0)
156 
157 /*
158  * Common routine to process the arguments to nan(), nanf(), and nanl().
159  */
160 void _scan_nan(uint32_t *__words, int __num_words, const char *__s);
161 
162 #ifdef _COMPLEX_H
163 /*
164  * Inline functions that can be used to construct complex values.
165  *
166  * The C99 standard intends x+I*y to be used for this, but x+I*y is
167  * currently unusable in general since gcc introduces many overflow,
168  * underflow, sign and efficiency bugs by rewriting I*y as
169  * (0.0+I)*(y+0.0*I) and laboriously computing the full complex product.
170  * In particular, I*Inf is corrupted to NaN+I*Inf, and I*-0 is corrupted
171  * to -0.0+I*0.0.
172  */
173 static __inline float complex
174 cpackf(float x, float y)
175 {
176 	float complex z;
177 
178 	__real__ z = x;
179 	__imag__ z = y;
180 	return (z);
181 }
182 
183 static __inline double complex
184 cpack(double x, double y)
185 {
186 	double complex z;
187 
188 	__real__ z = x;
189 	__imag__ z = y;
190 	return (z);
191 }
192 
193 static __inline long double complex
194 cpackl(long double x, long double y)
195 {
196 	long double complex z;
197 
198 	__real__ z = x;
199 	__imag__ z = y;
200 	return (z);
201 }
202 #endif /* _COMPLEX_H */
203 
204 /*
205  * ieee style elementary functions
206  *
207  * We rename functions here to improve other sources' diffability
208  * against fdlibm.
209  */
210 #define	__ieee754_sqrt	sqrt
211 #define	__ieee754_acos	acos
212 #define	__ieee754_acosh	acosh
213 #define	__ieee754_log	log
214 #define	__ieee754_atanh	atanh
215 #define	__ieee754_asin	asin
216 #define	__ieee754_atan2	atan2
217 #define	__ieee754_exp	exp
218 #define	__ieee754_cosh	cosh
219 #define	__ieee754_fmod	fmod
220 #define	__ieee754_pow	pow
221 #define	__ieee754_lgamma lgamma
222 #define	__ieee754_gamma	gamma
223 #define	__ieee754_lgamma_r lgamma_r
224 #define	__ieee754_gamma_r gamma_r
225 #define	__ieee754_log10	log10
226 #define	__ieee754_sinh	sinh
227 #define	__ieee754_hypot	hypot
228 #define	__ieee754_j0	j0
229 #define	__ieee754_j1	j1
230 #define	__ieee754_y0	y0
231 #define	__ieee754_y1	y1
232 #define	__ieee754_jn	jn
233 #define	__ieee754_yn	yn
234 #define	__ieee754_remainder remainder
235 #define	__ieee754_scalb	scalb
236 #define	__ieee754_sqrtf	sqrtf
237 #define	__ieee754_acosf	acosf
238 #define	__ieee754_acoshf acoshf
239 #define	__ieee754_logf	logf
240 #define	__ieee754_atanhf atanhf
241 #define	__ieee754_asinf	asinf
242 #define	__ieee754_atan2f atan2f
243 #define	__ieee754_expf	expf
244 #define	__ieee754_coshf	coshf
245 #define	__ieee754_fmodf	fmodf
246 #define	__ieee754_powf	powf
247 #define	__ieee754_lgammaf lgammaf
248 #define	__ieee754_gammaf gammaf
249 #define	__ieee754_lgammaf_r lgammaf_r
250 #define	__ieee754_gammaf_r gammaf_r
251 #define	__ieee754_log10f log10f
252 #define	__ieee754_sinhf	sinhf
253 #define	__ieee754_hypotf hypotf
254 #define	__ieee754_j0f	j0f
255 #define	__ieee754_j1f	j1f
256 #define	__ieee754_y0f	y0f
257 #define	__ieee754_y1f	y1f
258 #define	__ieee754_jnf	jnf
259 #define	__ieee754_ynf	ynf
260 #define	__ieee754_remainderf remainderf
261 #define	__ieee754_scalbf scalbf
262 
263 /* fdlibm kernel function */
264 int	__ieee754_rem_pio2(double,double*);
265 double	__kernel_sin(double,double,int);
266 double	__kernel_cos(double,double);
267 double	__kernel_tan(double,double,int);
268 int	__kernel_rem_pio2(double*,double*,int,int,int,const int*);
269 
270 /* float versions of fdlibm kernel functions */
271 int	__ieee754_rem_pio2f(float,float*);
272 float	__kernel_sindf(double);
273 float	__kernel_cosdf(double);
274 float	__kernel_tandf(double,int);
275 int	__kernel_rem_pio2f(float*,float*,int,int,int,const int*);
276 
277 #endif /* !_MATH_PRIVATE_H_ */
278