xref: /freebsd/lib/msun/src/k_tanf.c (revision f126890ac5386406dadf7c4cfa9566cbb56537c5)
1 /* k_tanf.c -- float version of k_tan.c
2  * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
3  * Optimized by Bruce D. Evans.
4  */
5 
6 /*
7  * ====================================================
8  * Copyright 2004 Sun Microsystems, Inc.  All Rights Reserved.
9  *
10  * Permission to use, copy, modify, and distribute this
11  * software is freely granted, provided that this notice
12  * is preserved.
13  * ====================================================
14  */
15 
16 #include "math.h"
17 #include "math_private.h"
18 
19 /* |tan(x)/x - t(x)| < 2**-25.5 (~[-2e-08, 2e-08]). */
20 static const double
21 T[] =  {
22   0x15554d3418c99f.0p-54,	/* 0.333331395030791399758 */
23   0x1112fd38999f72.0p-55,	/* 0.133392002712976742718 */
24   0x1b54c91d865afe.0p-57,	/* 0.0533812378445670393523 */
25   0x191df3908c33ce.0p-58,	/* 0.0245283181166547278873 */
26   0x185dadfcecf44e.0p-61,	/* 0.00297435743359967304927 */
27   0x1362b9bf971bcd.0p-59,	/* 0.00946564784943673166728 */
28 };
29 
30 #ifdef INLINE_KERNEL_TANDF
31 static __inline
32 #endif
33 float
34 __kernel_tandf(double x, int iy)
35 {
36 	double z,r,w,s,t,u;
37 
38 	z	=  x*x;
39 	/*
40 	 * Split up the polynomial into small independent terms to give
41 	 * opportunities for parallel evaluation.  The chosen splitting is
42 	 * micro-optimized for Athlons (XP, X64).  It costs 2 multiplications
43 	 * relative to Horner's method on sequential machines.
44 	 *
45 	 * We add the small terms from lowest degree up for efficiency on
46 	 * non-sequential machines (the lowest degree terms tend to be ready
47 	 * earlier).  Apart from this, we don't care about order of
48 	 * operations, and don't need to care since we have precision to
49 	 * spare.  However, the chosen splitting is good for accuracy too,
50 	 * and would give results as accurate as Horner's method if the
51 	 * small terms were added from highest degree down.
52 	 */
53 	r = T[4]+z*T[5];
54 	t = T[2]+z*T[3];
55 	w = z*z;
56 	s = z*x;
57 	u = T[0]+z*T[1];
58 	r = (x+s*u)+(s*w)*(t+w*r);
59 	if(iy==1) return r;
60 	else return -1.0/r;
61 }
62