13a8617a8SJordan K. Hubbard /* k_tanf.c -- float version of k_tan.c
23a8617a8SJordan K. Hubbard * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
3960d3da0SBruce Evans * Optimized by Bruce D. Evans.
43a8617a8SJordan K. Hubbard */
53a8617a8SJordan K. Hubbard
63a8617a8SJordan K. Hubbard /*
73a8617a8SJordan K. Hubbard * ====================================================
873fbb89dSDavid Schultz * Copyright 2004 Sun Microsystems, Inc. All Rights Reserved.
93a8617a8SJordan K. Hubbard *
103a8617a8SJordan K. Hubbard * Permission to use, copy, modify, and distribute this
113a8617a8SJordan K. Hubbard * software is freely granted, provided that this notice
123a8617a8SJordan K. Hubbard * is preserved.
133a8617a8SJordan K. Hubbard * ====================================================
143a8617a8SJordan K. Hubbard */
153a8617a8SJordan K. Hubbard
163a8617a8SJordan K. Hubbard #include "math.h"
173a8617a8SJordan K. Hubbard #include "math_private.h"
18e96c4fd9SBruce Evans
1916638b55SBruce Evans /* |tan(x)/x - t(x)| < 2**-25.5 (~[-2e-08, 2e-08]). */
2094a5f9beSBruce Evans static const double
213a8617a8SJordan K. Hubbard T[] = {
2216638b55SBruce Evans 0x15554d3418c99f.0p-54, /* 0.333331395030791399758 */
2316638b55SBruce Evans 0x1112fd38999f72.0p-55, /* 0.133392002712976742718 */
2416638b55SBruce Evans 0x1b54c91d865afe.0p-57, /* 0.0533812378445670393523 */
2516638b55SBruce Evans 0x191df3908c33ce.0p-58, /* 0.0245283181166547278873 */
2616638b55SBruce Evans 0x185dadfcecf44e.0p-61, /* 0.00297435743359967304927 */
2716638b55SBruce Evans 0x1362b9bf971bcd.0p-59, /* 0.00946564784943673166728 */
283a8617a8SJordan K. Hubbard };
293a8617a8SJordan K. Hubbard
302b795b29SDimitry Andric #ifdef INLINE_KERNEL_TANDF
312b795b29SDimitry Andric static __inline
324ce51209SBruce Evans #endif
332b795b29SDimitry Andric float
__kernel_tandf(double x,int iy)3494a5f9beSBruce Evans __kernel_tandf(double x, int iy)
353a8617a8SJordan K. Hubbard {
361dd21062SBruce Evans double z,r,w,s,t,u;
37e96c4fd9SBruce Evans
383a8617a8SJordan K. Hubbard z = x*x;
391dd21062SBruce Evans /*
401dd21062SBruce Evans * Split up the polynomial into small independent terms to give
411dd21062SBruce Evans * opportunities for parallel evaluation. The chosen splitting is
421dd21062SBruce Evans * micro-optimized for Athlons (XP, X64). It costs 2 multiplications
431dd21062SBruce Evans * relative to Horner's method on sequential machines.
441dd21062SBruce Evans *
451dd21062SBruce Evans * We add the small terms from lowest degree up for efficiency on
461dd21062SBruce Evans * non-sequential machines (the lowest degree terms tend to be ready
471dd21062SBruce Evans * earlier). Apart from this, we don't care about order of
48*82007616SGordon Bergling * operations, and don't need to care since we have precision to
491dd21062SBruce Evans * spare. However, the chosen splitting is good for accuracy too,
501dd21062SBruce Evans * and would give results as accurate as Horner's method if the
511dd21062SBruce Evans * small terms were added from highest degree down.
523a8617a8SJordan K. Hubbard */
531dd21062SBruce Evans r = T[4]+z*T[5];
541dd21062SBruce Evans t = T[2]+z*T[3];
551dd21062SBruce Evans w = z*z;
563a8617a8SJordan K. Hubbard s = z*x;
571dd21062SBruce Evans u = T[0]+z*T[1];
581dd21062SBruce Evans r = (x+s*u)+(s*w)*(t+w*r);
59833f0e1aSBruce Evans if(iy==1) return r;
60833f0e1aSBruce Evans else return -1.0/r;
613a8617a8SJordan K. Hubbard }
62