xref: /freebsd/lib/msun/src/k_tanf.c (revision 0dd5a5603e7a33d976f8e6015620bbc79839c609)
13a8617a8SJordan K. Hubbard /* k_tanf.c -- float version of k_tan.c
23a8617a8SJordan K. Hubbard  * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
3960d3da0SBruce Evans  * Optimized by Bruce D. Evans.
43a8617a8SJordan K. Hubbard  */
53a8617a8SJordan K. Hubbard 
63a8617a8SJordan K. Hubbard /*
73a8617a8SJordan K. Hubbard  * ====================================================
873fbb89dSDavid Schultz  * Copyright 2004 Sun Microsystems, Inc.  All Rights Reserved.
93a8617a8SJordan K. Hubbard  *
103a8617a8SJordan K. Hubbard  * Permission to use, copy, modify, and distribute this
113a8617a8SJordan K. Hubbard  * software is freely granted, provided that this notice
123a8617a8SJordan K. Hubbard  * is preserved.
133a8617a8SJordan K. Hubbard  * ====================================================
143a8617a8SJordan K. Hubbard  */
153a8617a8SJordan K. Hubbard 
163a8617a8SJordan K. Hubbard #include "math.h"
173a8617a8SJordan K. Hubbard #include "math_private.h"
18e96c4fd9SBruce Evans 
1916638b55SBruce Evans /* |tan(x)/x - t(x)| < 2**-25.5 (~[-2e-08, 2e-08]). */
2094a5f9beSBruce Evans static const double
213a8617a8SJordan K. Hubbard T[] =  {
2216638b55SBruce Evans   0x15554d3418c99f.0p-54,	/* 0.333331395030791399758 */
2316638b55SBruce Evans   0x1112fd38999f72.0p-55,	/* 0.133392002712976742718 */
2416638b55SBruce Evans   0x1b54c91d865afe.0p-57,	/* 0.0533812378445670393523 */
2516638b55SBruce Evans   0x191df3908c33ce.0p-58,	/* 0.0245283181166547278873 */
2616638b55SBruce Evans   0x185dadfcecf44e.0p-61,	/* 0.00297435743359967304927 */
2716638b55SBruce Evans   0x1362b9bf971bcd.0p-59,	/* 0.00946564784943673166728 */
283a8617a8SJordan K. Hubbard };
293a8617a8SJordan K. Hubbard 
302b795b29SDimitry Andric #ifdef INLINE_KERNEL_TANDF
312b795b29SDimitry Andric static __inline
324ce51209SBruce Evans #endif
332b795b29SDimitry Andric float
__kernel_tandf(double x,int iy)3494a5f9beSBruce Evans __kernel_tandf(double x, int iy)
353a8617a8SJordan K. Hubbard {
361dd21062SBruce Evans 	double z,r,w,s,t,u;
37e96c4fd9SBruce Evans 
383a8617a8SJordan K. Hubbard 	z	=  x*x;
391dd21062SBruce Evans 	/*
401dd21062SBruce Evans 	 * Split up the polynomial into small independent terms to give
411dd21062SBruce Evans 	 * opportunities for parallel evaluation.  The chosen splitting is
421dd21062SBruce Evans 	 * micro-optimized for Athlons (XP, X64).  It costs 2 multiplications
431dd21062SBruce Evans 	 * relative to Horner's method on sequential machines.
441dd21062SBruce Evans 	 *
451dd21062SBruce Evans 	 * We add the small terms from lowest degree up for efficiency on
461dd21062SBruce Evans 	 * non-sequential machines (the lowest degree terms tend to be ready
471dd21062SBruce Evans 	 * earlier).  Apart from this, we don't care about order of
48*82007616SGordon Bergling 	 * operations, and don't need to care since we have precision to
491dd21062SBruce Evans 	 * spare.  However, the chosen splitting is good for accuracy too,
501dd21062SBruce Evans 	 * and would give results as accurate as Horner's method if the
511dd21062SBruce Evans 	 * small terms were added from highest degree down.
523a8617a8SJordan K. Hubbard 	 */
531dd21062SBruce Evans 	r = T[4]+z*T[5];
541dd21062SBruce Evans 	t = T[2]+z*T[3];
551dd21062SBruce Evans 	w = z*z;
563a8617a8SJordan K. Hubbard 	s = z*x;
571dd21062SBruce Evans 	u = T[0]+z*T[1];
581dd21062SBruce Evans 	r = (x+s*u)+(s*w)*(t+w*r);
59833f0e1aSBruce Evans 	if(iy==1) return r;
60833f0e1aSBruce Evans 	else return -1.0/r;
613a8617a8SJordan K. Hubbard }
62