13a8617a8SJordan K. Hubbard /* @(#)k_tan.c 5.1 93/09/24 */ 23a8617a8SJordan K. Hubbard /* 33a8617a8SJordan K. Hubbard * ==================================================== 43a8617a8SJordan K. Hubbard * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. 53a8617a8SJordan K. Hubbard * 63a8617a8SJordan K. Hubbard * Developed at SunPro, a Sun Microsystems, Inc. business. 73a8617a8SJordan K. Hubbard * Permission to use, copy, modify, and distribute this 83a8617a8SJordan K. Hubbard * software is freely granted, provided that this notice 93a8617a8SJordan K. Hubbard * is preserved. 103a8617a8SJordan K. Hubbard * ==================================================== 113a8617a8SJordan K. Hubbard */ 123a8617a8SJordan K. Hubbard 133a8617a8SJordan K. Hubbard #ifndef lint 143a8617a8SJordan K. Hubbard static char rcsid[] = "$Id: k_tan.c,v 1.6 1994/08/18 23:06:16 jtc Exp $"; 153a8617a8SJordan K. Hubbard #endif 163a8617a8SJordan K. Hubbard 173a8617a8SJordan K. Hubbard /* __kernel_tan( x, y, k ) 183a8617a8SJordan K. Hubbard * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854 193a8617a8SJordan K. Hubbard * Input x is assumed to be bounded by ~pi/4 in magnitude. 203a8617a8SJordan K. Hubbard * Input y is the tail of x. 213a8617a8SJordan K. Hubbard * Input k indicates whether tan (if k=1) or 223a8617a8SJordan K. Hubbard * -1/tan (if k= -1) is returned. 233a8617a8SJordan K. Hubbard * 243a8617a8SJordan K. Hubbard * Algorithm 253a8617a8SJordan K. Hubbard * 1. Since tan(-x) = -tan(x), we need only to consider positive x. 263a8617a8SJordan K. Hubbard * 2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0. 273a8617a8SJordan K. Hubbard * 3. tan(x) is approximated by a odd polynomial of degree 27 on 283a8617a8SJordan K. Hubbard * [0,0.67434] 293a8617a8SJordan K. Hubbard * 3 27 303a8617a8SJordan K. Hubbard * tan(x) ~ x + T1*x + ... + T13*x 313a8617a8SJordan K. Hubbard * where 323a8617a8SJordan K. Hubbard * 333a8617a8SJordan K. Hubbard * |tan(x) 2 4 26 | -59.2 343a8617a8SJordan K. Hubbard * |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2 353a8617a8SJordan K. Hubbard * | x | 363a8617a8SJordan K. Hubbard * 373a8617a8SJordan K. Hubbard * Note: tan(x+y) = tan(x) + tan'(x)*y 383a8617a8SJordan K. Hubbard * ~ tan(x) + (1+x*x)*y 393a8617a8SJordan K. Hubbard * Therefore, for better accuracy in computing tan(x+y), let 403a8617a8SJordan K. Hubbard * 3 2 2 2 2 413a8617a8SJordan K. Hubbard * r = x *(T2+x *(T3+x *(...+x *(T12+x *T13)))) 423a8617a8SJordan K. Hubbard * then 433a8617a8SJordan K. Hubbard * 3 2 443a8617a8SJordan K. Hubbard * tan(x+y) = x + (T1*x + (x *(r+y)+y)) 453a8617a8SJordan K. Hubbard * 463a8617a8SJordan K. Hubbard * 4. For x in [0.67434,pi/4], let y = pi/4 - x, then 473a8617a8SJordan K. Hubbard * tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y)) 483a8617a8SJordan K. Hubbard * = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y))) 493a8617a8SJordan K. Hubbard */ 503a8617a8SJordan K. Hubbard 513a8617a8SJordan K. Hubbard #include "math.h" 523a8617a8SJordan K. Hubbard #include "math_private.h" 533a8617a8SJordan K. Hubbard #ifdef __STDC__ 543a8617a8SJordan K. Hubbard static const double 553a8617a8SJordan K. Hubbard #else 563a8617a8SJordan K. Hubbard static double 573a8617a8SJordan K. Hubbard #endif 583a8617a8SJordan K. Hubbard one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ 593a8617a8SJordan K. Hubbard pio4 = 7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */ 603a8617a8SJordan K. Hubbard pio4lo= 3.06161699786838301793e-17, /* 0x3C81A626, 0x33145C07 */ 613a8617a8SJordan K. Hubbard T[] = { 623a8617a8SJordan K. Hubbard 3.33333333333334091986e-01, /* 0x3FD55555, 0x55555563 */ 633a8617a8SJordan K. Hubbard 1.33333333333201242699e-01, /* 0x3FC11111, 0x1110FE7A */ 643a8617a8SJordan K. Hubbard 5.39682539762260521377e-02, /* 0x3FABA1BA, 0x1BB341FE */ 653a8617a8SJordan K. Hubbard 2.18694882948595424599e-02, /* 0x3F9664F4, 0x8406D637 */ 663a8617a8SJordan K. Hubbard 8.86323982359930005737e-03, /* 0x3F8226E3, 0xE96E8493 */ 673a8617a8SJordan K. Hubbard 3.59207910759131235356e-03, /* 0x3F6D6D22, 0xC9560328 */ 683a8617a8SJordan K. Hubbard 1.45620945432529025516e-03, /* 0x3F57DBC8, 0xFEE08315 */ 693a8617a8SJordan K. Hubbard 5.88041240820264096874e-04, /* 0x3F4344D8, 0xF2F26501 */ 703a8617a8SJordan K. Hubbard 2.46463134818469906812e-04, /* 0x3F3026F7, 0x1A8D1068 */ 713a8617a8SJordan K. Hubbard 7.81794442939557092300e-05, /* 0x3F147E88, 0xA03792A6 */ 723a8617a8SJordan K. Hubbard 7.14072491382608190305e-05, /* 0x3F12B80F, 0x32F0A7E9 */ 733a8617a8SJordan K. Hubbard -1.85586374855275456654e-05, /* 0xBEF375CB, 0xDB605373 */ 743a8617a8SJordan K. Hubbard 2.59073051863633712884e-05, /* 0x3EFB2A70, 0x74BF7AD4 */ 753a8617a8SJordan K. Hubbard }; 763a8617a8SJordan K. Hubbard 773a8617a8SJordan K. Hubbard #ifdef __STDC__ 783a8617a8SJordan K. Hubbard double __kernel_tan(double x, double y, int iy) 793a8617a8SJordan K. Hubbard #else 803a8617a8SJordan K. Hubbard double __kernel_tan(x, y, iy) 813a8617a8SJordan K. Hubbard double x,y; int iy; 823a8617a8SJordan K. Hubbard #endif 833a8617a8SJordan K. Hubbard { 843a8617a8SJordan K. Hubbard double z,r,v,w,s; 853a8617a8SJordan K. Hubbard int32_t ix,hx; 863a8617a8SJordan K. Hubbard GET_HIGH_WORD(hx,x); 873a8617a8SJordan K. Hubbard ix = hx&0x7fffffff; /* high word of |x| */ 883a8617a8SJordan K. Hubbard if(ix<0x3e300000) /* x < 2**-28 */ 893a8617a8SJordan K. Hubbard {if((int)x==0) { /* generate inexact */ 903a8617a8SJordan K. Hubbard u_int32_t low; 913a8617a8SJordan K. Hubbard GET_LOW_WORD(low,x); 923a8617a8SJordan K. Hubbard if(((ix|low)|(iy+1))==0) return one/fabs(x); 933a8617a8SJordan K. Hubbard else return (iy==1)? x: -one/x; 943a8617a8SJordan K. Hubbard } 953a8617a8SJordan K. Hubbard } 963a8617a8SJordan K. Hubbard if(ix>=0x3FE59428) { /* |x|>=0.6744 */ 973a8617a8SJordan K. Hubbard if(hx<0) {x = -x; y = -y;} 983a8617a8SJordan K. Hubbard z = pio4-x; 993a8617a8SJordan K. Hubbard w = pio4lo-y; 1003a8617a8SJordan K. Hubbard x = z+w; y = 0.0; 1013a8617a8SJordan K. Hubbard } 1023a8617a8SJordan K. Hubbard z = x*x; 1033a8617a8SJordan K. Hubbard w = z*z; 1043a8617a8SJordan K. Hubbard /* Break x^5*(T[1]+x^2*T[2]+...) into 1053a8617a8SJordan K. Hubbard * x^5(T[1]+x^4*T[3]+...+x^20*T[11]) + 1063a8617a8SJordan K. Hubbard * x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12])) 1073a8617a8SJordan K. Hubbard */ 1083a8617a8SJordan K. Hubbard r = T[1]+w*(T[3]+w*(T[5]+w*(T[7]+w*(T[9]+w*T[11])))); 1093a8617a8SJordan K. Hubbard v = z*(T[2]+w*(T[4]+w*(T[6]+w*(T[8]+w*(T[10]+w*T[12]))))); 1103a8617a8SJordan K. Hubbard s = z*x; 1113a8617a8SJordan K. Hubbard r = y + z*(s*(r+v)+y); 1123a8617a8SJordan K. Hubbard r += T[0]*s; 1133a8617a8SJordan K. Hubbard w = x+r; 1143a8617a8SJordan K. Hubbard if(ix>=0x3FE59428) { 1153a8617a8SJordan K. Hubbard v = (double)iy; 1163a8617a8SJordan K. Hubbard return (double)(1-((hx>>30)&2))*(v-2.0*(x-(w*w/(w+v)-r))); 1173a8617a8SJordan K. Hubbard } 1183a8617a8SJordan K. Hubbard if(iy==1) return w; 1193a8617a8SJordan K. Hubbard else { /* if allow error up to 2 ulp, 1203a8617a8SJordan K. Hubbard simply return -1.0/(x+r) here */ 1213a8617a8SJordan K. Hubbard /* compute -1.0/(x+r) accurately */ 1223a8617a8SJordan K. Hubbard double a,t; 1233a8617a8SJordan K. Hubbard z = w; 1243a8617a8SJordan K. Hubbard SET_LOW_WORD(z,0); 1253a8617a8SJordan K. Hubbard v = r-(z - x); /* z+v = r+x */ 1263a8617a8SJordan K. Hubbard t = a = -1.0/w; /* a = -1.0/w */ 1273a8617a8SJordan K. Hubbard SET_LOW_WORD(t,0); 1283a8617a8SJordan K. Hubbard s = 1.0+t*z; 1293a8617a8SJordan K. Hubbard return t+a*(s+t*v); 1303a8617a8SJordan K. Hubbard } 1313a8617a8SJordan K. Hubbard } 132