13a8617a8SJordan K. Hubbard /* @(#)k_tan.c 5.1 93/09/24 */ 23a8617a8SJordan K. Hubbard /* 33a8617a8SJordan K. Hubbard * ==================================================== 421d39caaSDavid Schultz * Copyright 2004 Sun Microsystems, Inc. All Rights Reserved. 53a8617a8SJordan K. Hubbard * 63a8617a8SJordan K. Hubbard * Permission to use, copy, modify, and distribute this 73a8617a8SJordan K. Hubbard * software is freely granted, provided that this notice 83a8617a8SJordan K. Hubbard * is preserved. 93a8617a8SJordan K. Hubbard * ==================================================== 103a8617a8SJordan K. Hubbard */ 113a8617a8SJordan K. Hubbard 123a8617a8SJordan K. Hubbard #ifndef lint 137f3dea24SPeter Wemm static char rcsid[] = "$FreeBSD$"; 143a8617a8SJordan K. Hubbard #endif 153a8617a8SJordan K. Hubbard 163a8617a8SJordan K. Hubbard /* __kernel_tan( x, y, k ) 173a8617a8SJordan K. Hubbard * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854 183a8617a8SJordan K. Hubbard * Input x is assumed to be bounded by ~pi/4 in magnitude. 193a8617a8SJordan K. Hubbard * Input y is the tail of x. 203a8617a8SJordan K. Hubbard * Input k indicates whether tan (if k=1) or 213a8617a8SJordan K. Hubbard * -1/tan (if k= -1) is returned. 223a8617a8SJordan K. Hubbard * 233a8617a8SJordan K. Hubbard * Algorithm 243a8617a8SJordan K. Hubbard * 1. Since tan(-x) = -tan(x), we need only to consider positive x. 253a8617a8SJordan K. Hubbard * 2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0. 269d5abbddSJens Schweikhardt * 3. tan(x) is approximated by an odd polynomial of degree 27 on 273a8617a8SJordan K. Hubbard * [0,0.67434] 283a8617a8SJordan K. Hubbard * 3 27 293a8617a8SJordan K. Hubbard * tan(x) ~ x + T1*x + ... + T13*x 303a8617a8SJordan K. Hubbard * where 313a8617a8SJordan K. Hubbard * 323a8617a8SJordan K. Hubbard * |tan(x) 2 4 26 | -59.2 333a8617a8SJordan K. Hubbard * |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2 343a8617a8SJordan K. Hubbard * | x | 353a8617a8SJordan K. Hubbard * 363a8617a8SJordan K. Hubbard * Note: tan(x+y) = tan(x) + tan'(x)*y 373a8617a8SJordan K. Hubbard * ~ tan(x) + (1+x*x)*y 383a8617a8SJordan K. Hubbard * Therefore, for better accuracy in computing tan(x+y), let 393a8617a8SJordan K. Hubbard * 3 2 2 2 2 403a8617a8SJordan K. Hubbard * r = x *(T2+x *(T3+x *(...+x *(T12+x *T13)))) 413a8617a8SJordan K. Hubbard * then 423a8617a8SJordan K. Hubbard * 3 2 433a8617a8SJordan K. Hubbard * tan(x+y) = x + (T1*x + (x *(r+y)+y)) 443a8617a8SJordan K. Hubbard * 453a8617a8SJordan K. Hubbard * 4. For x in [0.67434,pi/4], let y = pi/4 - x, then 463a8617a8SJordan K. Hubbard * tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y)) 473a8617a8SJordan K. Hubbard * = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y))) 483a8617a8SJordan K. Hubbard */ 493a8617a8SJordan K. Hubbard 503a8617a8SJordan K. Hubbard #include "math.h" 513a8617a8SJordan K. Hubbard #include "math_private.h" 523a8617a8SJordan K. Hubbard static const double 533a8617a8SJordan K. Hubbard one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ 543a8617a8SJordan K. Hubbard pio4 = 7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */ 553a8617a8SJordan K. Hubbard pio4lo= 3.06161699786838301793e-17, /* 0x3C81A626, 0x33145C07 */ 563a8617a8SJordan K. Hubbard T[] = { 573a8617a8SJordan K. Hubbard 3.33333333333334091986e-01, /* 0x3FD55555, 0x55555563 */ 583a8617a8SJordan K. Hubbard 1.33333333333201242699e-01, /* 0x3FC11111, 0x1110FE7A */ 593a8617a8SJordan K. Hubbard 5.39682539762260521377e-02, /* 0x3FABA1BA, 0x1BB341FE */ 603a8617a8SJordan K. Hubbard 2.18694882948595424599e-02, /* 0x3F9664F4, 0x8406D637 */ 613a8617a8SJordan K. Hubbard 8.86323982359930005737e-03, /* 0x3F8226E3, 0xE96E8493 */ 623a8617a8SJordan K. Hubbard 3.59207910759131235356e-03, /* 0x3F6D6D22, 0xC9560328 */ 633a8617a8SJordan K. Hubbard 1.45620945432529025516e-03, /* 0x3F57DBC8, 0xFEE08315 */ 643a8617a8SJordan K. Hubbard 5.88041240820264096874e-04, /* 0x3F4344D8, 0xF2F26501 */ 653a8617a8SJordan K. Hubbard 2.46463134818469906812e-04, /* 0x3F3026F7, 0x1A8D1068 */ 663a8617a8SJordan K. Hubbard 7.81794442939557092300e-05, /* 0x3F147E88, 0xA03792A6 */ 673a8617a8SJordan K. Hubbard 7.14072491382608190305e-05, /* 0x3F12B80F, 0x32F0A7E9 */ 683a8617a8SJordan K. Hubbard -1.85586374855275456654e-05, /* 0xBEF375CB, 0xDB605373 */ 693a8617a8SJordan K. Hubbard 2.59073051863633712884e-05, /* 0x3EFB2A70, 0x74BF7AD4 */ 703a8617a8SJordan K. Hubbard }; 713a8617a8SJordan K. Hubbard 7259b19ff1SAlfred Perlstein double 7359b19ff1SAlfred Perlstein __kernel_tan(double x, double y, int iy) 743a8617a8SJordan K. Hubbard { 753a8617a8SJordan K. Hubbard double z,r,v,w,s; 763a8617a8SJordan K. Hubbard int32_t ix,hx; 773a8617a8SJordan K. Hubbard GET_HIGH_WORD(hx,x); 783a8617a8SJordan K. Hubbard ix = hx&0x7fffffff; /* high word of |x| */ 7921d39caaSDavid Schultz if(ix<0x3e300000) { /* x < 2**-28 */ 8021d39caaSDavid Schultz if ((int) x == 0) { /* generate inexact */ 813a8617a8SJordan K. Hubbard u_int32_t low; 823a8617a8SJordan K. Hubbard GET_LOW_WORD(low,x); 8321d39caaSDavid Schultz if (((ix | low) | (iy + 1)) == 0) 8421d39caaSDavid Schultz return one / fabs(x); 8521d39caaSDavid Schultz else { 8621d39caaSDavid Schultz if (iy == 1) 8721d39caaSDavid Schultz return x; 8821d39caaSDavid Schultz else { /* compute -1 / (x+y) carefully */ 8921d39caaSDavid Schultz double a, t; 9021d39caaSDavid Schultz 9121d39caaSDavid Schultz z = w = x + y; 9221d39caaSDavid Schultz SET_LOW_WORD(z, 0); 9321d39caaSDavid Schultz v = y - (z - x); 9421d39caaSDavid Schultz t = a = -one / w; 9521d39caaSDavid Schultz SET_LOW_WORD(t, 0); 9621d39caaSDavid Schultz s = one + t * z; 9721d39caaSDavid Schultz return t + a * (s + t * v); 9821d39caaSDavid Schultz } 9921d39caaSDavid Schultz } 1003a8617a8SJordan K. Hubbard } 1013a8617a8SJordan K. Hubbard } 1023a8617a8SJordan K. Hubbard if(ix>=0x3FE59428) { /* |x|>=0.6744 */ 1033a8617a8SJordan K. Hubbard if(hx<0) {x = -x; y = -y;} 1043a8617a8SJordan K. Hubbard z = pio4-x; 1053a8617a8SJordan K. Hubbard w = pio4lo-y; 1063a8617a8SJordan K. Hubbard x = z+w; y = 0.0; 1073a8617a8SJordan K. Hubbard } 1083a8617a8SJordan K. Hubbard z = x*x; 1093a8617a8SJordan K. Hubbard w = z*z; 1103a8617a8SJordan K. Hubbard /* Break x^5*(T[1]+x^2*T[2]+...) into 1113a8617a8SJordan K. Hubbard * x^5(T[1]+x^4*T[3]+...+x^20*T[11]) + 1123a8617a8SJordan K. Hubbard * x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12])) 1133a8617a8SJordan K. Hubbard */ 1143a8617a8SJordan K. Hubbard r = T[1]+w*(T[3]+w*(T[5]+w*(T[7]+w*(T[9]+w*T[11])))); 1153a8617a8SJordan K. Hubbard v = z*(T[2]+w*(T[4]+w*(T[6]+w*(T[8]+w*(T[10]+w*T[12]))))); 1163a8617a8SJordan K. Hubbard s = z*x; 1173a8617a8SJordan K. Hubbard r = y + z*(s*(r+v)+y); 1183a8617a8SJordan K. Hubbard r += T[0]*s; 1193a8617a8SJordan K. Hubbard w = x+r; 1203a8617a8SJordan K. Hubbard if(ix>=0x3FE59428) { 1213a8617a8SJordan K. Hubbard v = (double)iy; 1223a8617a8SJordan K. Hubbard return (double)(1-((hx>>30)&2))*(v-2.0*(x-(w*w/(w+v)-r))); 1233a8617a8SJordan K. Hubbard } 1243a8617a8SJordan K. Hubbard if(iy==1) return w; 1253a8617a8SJordan K. Hubbard else { /* if allow error up to 2 ulp, 1263a8617a8SJordan K. Hubbard simply return -1.0/(x+r) here */ 1273a8617a8SJordan K. Hubbard /* compute -1.0/(x+r) accurately */ 1283a8617a8SJordan K. Hubbard double a,t; 1293a8617a8SJordan K. Hubbard z = w; 1303a8617a8SJordan K. Hubbard SET_LOW_WORD(z,0); 1313a8617a8SJordan K. Hubbard v = r-(z - x); /* z+v = r+x */ 1323a8617a8SJordan K. Hubbard t = a = -1.0/w; /* a = -1.0/w */ 1333a8617a8SJordan K. Hubbard SET_LOW_WORD(t,0); 1343a8617a8SJordan K. Hubbard s = 1.0+t*z; 1353a8617a8SJordan K. Hubbard return t+a*(s+t*v); 1363a8617a8SJordan K. Hubbard } 1373a8617a8SJordan K. Hubbard } 138