13a8617a8SJordan K. Hubbard /*
23a8617a8SJordan K. Hubbard * ====================================================
321d39caaSDavid Schultz * Copyright 2004 Sun Microsystems, Inc. All Rights Reserved.
43a8617a8SJordan K. Hubbard *
53a8617a8SJordan K. Hubbard * Permission to use, copy, modify, and distribute this
63a8617a8SJordan K. Hubbard * software is freely granted, provided that this notice
73a8617a8SJordan K. Hubbard * is preserved.
83a8617a8SJordan K. Hubbard * ====================================================
93a8617a8SJordan K. Hubbard */
103a8617a8SJordan K. Hubbard
113a8617a8SJordan K. Hubbard /* __kernel_tan( x, y, k )
12cb92d4d5SBruce Evans * kernel tan function on ~[-pi/4, pi/4] (except on -0), pi/4 ~ 0.7854
133a8617a8SJordan K. Hubbard * Input x is assumed to be bounded by ~pi/4 in magnitude.
143a8617a8SJordan K. Hubbard * Input y is the tail of x.
153f708241SDavid Schultz * Input k indicates whether tan (if k = 1) or -1/tan (if k = -1) is returned.
163a8617a8SJordan K. Hubbard *
173a8617a8SJordan K. Hubbard * Algorithm
183a8617a8SJordan K. Hubbard * 1. Since tan(-x) = -tan(x), we need only to consider positive x.
19cb92d4d5SBruce Evans * 2. Callers must return tan(-0) = -0 without calling here since our
20cb92d4d5SBruce Evans * odd polynomial is not evaluated in a way that preserves -0.
21cb92d4d5SBruce Evans * Callers may do the optimization tan(x) ~ x for tiny x.
223f708241SDavid Schultz * 3. tan(x) is approximated by a odd polynomial of degree 27 on
233a8617a8SJordan K. Hubbard * [0,0.67434]
243a8617a8SJordan K. Hubbard * 3 27
253a8617a8SJordan K. Hubbard * tan(x) ~ x + T1*x + ... + T13*x
263a8617a8SJordan K. Hubbard * where
273a8617a8SJordan K. Hubbard *
283a8617a8SJordan K. Hubbard * |tan(x) 2 4 26 | -59.2
293a8617a8SJordan K. Hubbard * |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2
303a8617a8SJordan K. Hubbard * | x |
313a8617a8SJordan K. Hubbard *
323a8617a8SJordan K. Hubbard * Note: tan(x+y) = tan(x) + tan'(x)*y
333a8617a8SJordan K. Hubbard * ~ tan(x) + (1+x*x)*y
343a8617a8SJordan K. Hubbard * Therefore, for better accuracy in computing tan(x+y), let
353a8617a8SJordan K. Hubbard * 3 2 2 2 2
363a8617a8SJordan K. Hubbard * r = x *(T2+x *(T3+x *(...+x *(T12+x *T13))))
373a8617a8SJordan K. Hubbard * then
383a8617a8SJordan K. Hubbard * 3 2
393a8617a8SJordan K. Hubbard * tan(x+y) = x + (T1*x + (x *(r+y)+y))
403a8617a8SJordan K. Hubbard *
413a8617a8SJordan K. Hubbard * 4. For x in [0.67434,pi/4], let y = pi/4 - x, then
423a8617a8SJordan K. Hubbard * tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
433a8617a8SJordan K. Hubbard * = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
443a8617a8SJordan K. Hubbard */
453a8617a8SJordan K. Hubbard
463a8617a8SJordan K. Hubbard #include "math.h"
473a8617a8SJordan K. Hubbard #include "math_private.h"
483f708241SDavid Schultz static const double xxx[] = {
493f708241SDavid Schultz 3.33333333333334091986e-01, /* 3FD55555, 55555563 */
503f708241SDavid Schultz 1.33333333333201242699e-01, /* 3FC11111, 1110FE7A */
513f708241SDavid Schultz 5.39682539762260521377e-02, /* 3FABA1BA, 1BB341FE */
523f708241SDavid Schultz 2.18694882948595424599e-02, /* 3F9664F4, 8406D637 */
533f708241SDavid Schultz 8.86323982359930005737e-03, /* 3F8226E3, E96E8493 */
543f708241SDavid Schultz 3.59207910759131235356e-03, /* 3F6D6D22, C9560328 */
553f708241SDavid Schultz 1.45620945432529025516e-03, /* 3F57DBC8, FEE08315 */
563f708241SDavid Schultz 5.88041240820264096874e-04, /* 3F4344D8, F2F26501 */
573f708241SDavid Schultz 2.46463134818469906812e-04, /* 3F3026F7, 1A8D1068 */
583f708241SDavid Schultz 7.81794442939557092300e-05, /* 3F147E88, A03792A6 */
593f708241SDavid Schultz 7.14072491382608190305e-05, /* 3F12B80F, 32F0A7E9 */
603f708241SDavid Schultz -1.85586374855275456654e-05, /* BEF375CB, DB605373 */
613f708241SDavid Schultz 2.59073051863633712884e-05, /* 3EFB2A70, 74BF7AD4 */
623f708241SDavid Schultz /* one */ 1.00000000000000000000e+00, /* 3FF00000, 00000000 */
633f708241SDavid Schultz /* pio4 */ 7.85398163397448278999e-01, /* 3FE921FB, 54442D18 */
643f708241SDavid Schultz /* pio4lo */ 3.06161699786838301793e-17 /* 3C81A626, 33145C07 */
653a8617a8SJordan K. Hubbard };
663f708241SDavid Schultz #define one xxx[13]
673f708241SDavid Schultz #define pio4 xxx[14]
683f708241SDavid Schultz #define pio4lo xxx[15]
693f708241SDavid Schultz #define T xxx
703f708241SDavid Schultz /* INDENT ON */
713a8617a8SJordan K. Hubbard
7259b19ff1SAlfred Perlstein double
__kernel_tan(double x,double y,int iy)733f708241SDavid Schultz __kernel_tan(double x, double y, int iy) {
743a8617a8SJordan K. Hubbard double z, r, v, w, s;
753a8617a8SJordan K. Hubbard int32_t ix, hx;
763f708241SDavid Schultz
773a8617a8SJordan K. Hubbard GET_HIGH_WORD(hx,x);
783a8617a8SJordan K. Hubbard ix = hx & 0x7fffffff; /* high word of |x| */
793a8617a8SJordan K. Hubbard if (ix >= 0x3FE59428) { /* |x| >= 0.6744 */
803f708241SDavid Schultz if (hx < 0) {
813f708241SDavid Schultz x = -x;
823f708241SDavid Schultz y = -y;
833f708241SDavid Schultz }
843a8617a8SJordan K. Hubbard z = pio4 - x;
853a8617a8SJordan K. Hubbard w = pio4lo - y;
863f708241SDavid Schultz x = z + w;
873f708241SDavid Schultz y = 0.0;
883a8617a8SJordan K. Hubbard }
893a8617a8SJordan K. Hubbard z = x * x;
903a8617a8SJordan K. Hubbard w = z * z;
913f708241SDavid Schultz /*
923f708241SDavid Schultz * Break x^5*(T[1]+x^2*T[2]+...) into
933a8617a8SJordan K. Hubbard * x^5(T[1]+x^4*T[3]+...+x^20*T[11]) +
943a8617a8SJordan K. Hubbard * x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12]))
953a8617a8SJordan K. Hubbard */
963f708241SDavid Schultz r = T[1] + w * (T[3] + w * (T[5] + w * (T[7] + w * (T[9] +
973f708241SDavid Schultz w * T[11]))));
983f708241SDavid Schultz v = z * (T[2] + w * (T[4] + w * (T[6] + w * (T[8] + w * (T[10] +
993f708241SDavid Schultz w * T[12])))));
1003a8617a8SJordan K. Hubbard s = z * x;
1013a8617a8SJordan K. Hubbard r = y + z * (s * (r + v) + y);
1023a8617a8SJordan K. Hubbard r += T[0] * s;
1033a8617a8SJordan K. Hubbard w = x + r;
1043a8617a8SJordan K. Hubbard if (ix >= 0x3FE59428) {
1053a8617a8SJordan K. Hubbard v = (double) iy;
1063f708241SDavid Schultz return (double) (1 - ((hx >> 30) & 2)) *
1073f708241SDavid Schultz (v - 2.0 * (x - (w * w / (w + v) - r)));
1083a8617a8SJordan K. Hubbard }
1093f708241SDavid Schultz if (iy == 1)
1103f708241SDavid Schultz return w;
1113f708241SDavid Schultz else {
1123f708241SDavid Schultz /*
1133f708241SDavid Schultz * if allow error up to 2 ulp, simply return
1143f708241SDavid Schultz * -1.0 / (x+r) here
1153f708241SDavid Schultz */
1163a8617a8SJordan K. Hubbard /* compute -1.0 / (x+r) accurately */
1173a8617a8SJordan K. Hubbard double a, t;
1183a8617a8SJordan K. Hubbard z = w;
1193a8617a8SJordan K. Hubbard SET_LOW_WORD(z,0);
1203a8617a8SJordan K. Hubbard v = r - (z - x); /* z+v = r+x */
1213a8617a8SJordan K. Hubbard t = a = -1.0 / w; /* a = -1.0/w */
1223a8617a8SJordan K. Hubbard SET_LOW_WORD(t,0);
1233a8617a8SJordan K. Hubbard s = 1.0 + t * z;
1243a8617a8SJordan K. Hubbard return t + a * (s + t * v);
1253a8617a8SJordan K. Hubbard }
1263a8617a8SJordan K. Hubbard }
127