xref: /freebsd/lib/msun/src/k_tan.c (revision 0dd5a5603e7a33d976f8e6015620bbc79839c609)
13a8617a8SJordan K. Hubbard /*
23a8617a8SJordan K. Hubbard  * ====================================================
321d39caaSDavid Schultz  * Copyright 2004 Sun Microsystems, Inc.  All Rights Reserved.
43a8617a8SJordan K. Hubbard  *
53a8617a8SJordan K. Hubbard  * Permission to use, copy, modify, and distribute this
63a8617a8SJordan K. Hubbard  * software is freely granted, provided that this notice
73a8617a8SJordan K. Hubbard  * is preserved.
83a8617a8SJordan K. Hubbard  * ====================================================
93a8617a8SJordan K. Hubbard  */
103a8617a8SJordan K. Hubbard 
113a8617a8SJordan K. Hubbard /* __kernel_tan( x, y, k )
12cb92d4d5SBruce Evans  * kernel tan function on ~[-pi/4, pi/4] (except on -0), pi/4 ~ 0.7854
133a8617a8SJordan K. Hubbard  * Input x is assumed to be bounded by ~pi/4 in magnitude.
143a8617a8SJordan K. Hubbard  * Input y is the tail of x.
153f708241SDavid Schultz  * Input k indicates whether tan (if k = 1) or -1/tan (if k = -1) is returned.
163a8617a8SJordan K. Hubbard  *
173a8617a8SJordan K. Hubbard  * Algorithm
183a8617a8SJordan K. Hubbard  *	1. Since tan(-x) = -tan(x), we need only to consider positive x.
19cb92d4d5SBruce Evans  *	2. Callers must return tan(-0) = -0 without calling here since our
20cb92d4d5SBruce Evans  *	   odd polynomial is not evaluated in a way that preserves -0.
21cb92d4d5SBruce Evans  *	   Callers may do the optimization tan(x) ~ x for tiny x.
223f708241SDavid Schultz  *	3. tan(x) is approximated by a odd polynomial of degree 27 on
233a8617a8SJordan K. Hubbard  *	   [0,0.67434]
243a8617a8SJordan K. Hubbard  *		  	         3             27
253a8617a8SJordan K. Hubbard  *	   	tan(x) ~ x + T1*x + ... + T13*x
263a8617a8SJordan K. Hubbard  *	   where
273a8617a8SJordan K. Hubbard  *
283a8617a8SJordan K. Hubbard  * 	        |tan(x)         2     4            26   |     -59.2
293a8617a8SJordan K. Hubbard  * 	        |----- - (1+T1*x +T2*x +.... +T13*x    )| <= 2
303a8617a8SJordan K. Hubbard  * 	        |  x 					|
313a8617a8SJordan K. Hubbard  *
323a8617a8SJordan K. Hubbard  *	   Note: tan(x+y) = tan(x) + tan'(x)*y
333a8617a8SJordan K. Hubbard  *		          ~ tan(x) + (1+x*x)*y
343a8617a8SJordan K. Hubbard  *	   Therefore, for better accuracy in computing tan(x+y), let
353a8617a8SJordan K. Hubbard  *		     3      2      2       2       2
363a8617a8SJordan K. Hubbard  *		r = x *(T2+x *(T3+x *(...+x *(T12+x *T13))))
373a8617a8SJordan K. Hubbard  *	   then
383a8617a8SJordan K. Hubbard  *		 		    3    2
393a8617a8SJordan K. Hubbard  *		tan(x+y) = x + (T1*x + (x *(r+y)+y))
403a8617a8SJordan K. Hubbard  *
413a8617a8SJordan K. Hubbard  *      4. For x in [0.67434,pi/4],  let y = pi/4 - x, then
423a8617a8SJordan K. Hubbard  *		tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
433a8617a8SJordan K. Hubbard  *		       = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
443a8617a8SJordan K. Hubbard  */
453a8617a8SJordan K. Hubbard 
463a8617a8SJordan K. Hubbard #include "math.h"
473a8617a8SJordan K. Hubbard #include "math_private.h"
483f708241SDavid Schultz static const double xxx[] = {
493f708241SDavid Schultz 		 3.33333333333334091986e-01,	/* 3FD55555, 55555563 */
503f708241SDavid Schultz 		 1.33333333333201242699e-01,	/* 3FC11111, 1110FE7A */
513f708241SDavid Schultz 		 5.39682539762260521377e-02,	/* 3FABA1BA, 1BB341FE */
523f708241SDavid Schultz 		 2.18694882948595424599e-02,	/* 3F9664F4, 8406D637 */
533f708241SDavid Schultz 		 8.86323982359930005737e-03,	/* 3F8226E3, E96E8493 */
543f708241SDavid Schultz 		 3.59207910759131235356e-03,	/* 3F6D6D22, C9560328 */
553f708241SDavid Schultz 		 1.45620945432529025516e-03,	/* 3F57DBC8, FEE08315 */
563f708241SDavid Schultz 		 5.88041240820264096874e-04,	/* 3F4344D8, F2F26501 */
573f708241SDavid Schultz 		 2.46463134818469906812e-04,	/* 3F3026F7, 1A8D1068 */
583f708241SDavid Schultz 		 7.81794442939557092300e-05,	/* 3F147E88, A03792A6 */
593f708241SDavid Schultz 		 7.14072491382608190305e-05,	/* 3F12B80F, 32F0A7E9 */
603f708241SDavid Schultz 		-1.85586374855275456654e-05,	/* BEF375CB, DB605373 */
613f708241SDavid Schultz 		 2.59073051863633712884e-05,	/* 3EFB2A70, 74BF7AD4 */
623f708241SDavid Schultz /* one */	 1.00000000000000000000e+00,	/* 3FF00000, 00000000 */
633f708241SDavid Schultz /* pio4 */	 7.85398163397448278999e-01,	/* 3FE921FB, 54442D18 */
643f708241SDavid Schultz /* pio4lo */	 3.06161699786838301793e-17	/* 3C81A626, 33145C07 */
653a8617a8SJordan K. Hubbard };
663f708241SDavid Schultz #define	one	xxx[13]
673f708241SDavid Schultz #define	pio4	xxx[14]
683f708241SDavid Schultz #define	pio4lo	xxx[15]
693f708241SDavid Schultz #define	T	xxx
703f708241SDavid Schultz /* INDENT ON */
713a8617a8SJordan K. Hubbard 
7259b19ff1SAlfred Perlstein double
__kernel_tan(double x,double y,int iy)733f708241SDavid Schultz __kernel_tan(double x, double y, int iy) {
743a8617a8SJordan K. Hubbard 	double z, r, v, w, s;
753a8617a8SJordan K. Hubbard 	int32_t ix, hx;
763f708241SDavid Schultz 
773a8617a8SJordan K. Hubbard 	GET_HIGH_WORD(hx,x);
783a8617a8SJordan K. Hubbard 	ix = hx & 0x7fffffff;			/* high word of |x| */
793a8617a8SJordan K. Hubbard 	if (ix >= 0x3FE59428) {	/* |x| >= 0.6744 */
803f708241SDavid Schultz 		if (hx < 0) {
813f708241SDavid Schultz 			x = -x;
823f708241SDavid Schultz 			y = -y;
833f708241SDavid Schultz 		}
843a8617a8SJordan K. Hubbard 		z = pio4 - x;
853a8617a8SJordan K. Hubbard 		w = pio4lo - y;
863f708241SDavid Schultz 		x = z + w;
873f708241SDavid Schultz 		y = 0.0;
883a8617a8SJordan K. Hubbard 	}
893a8617a8SJordan K. Hubbard 	z = x * x;
903a8617a8SJordan K. Hubbard 	w = z * z;
913f708241SDavid Schultz 	/*
923f708241SDavid Schultz 	 * Break x^5*(T[1]+x^2*T[2]+...) into
933a8617a8SJordan K. Hubbard 	 * x^5(T[1]+x^4*T[3]+...+x^20*T[11]) +
943a8617a8SJordan K. Hubbard 	 * x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12]))
953a8617a8SJordan K. Hubbard 	 */
963f708241SDavid Schultz 	r = T[1] + w * (T[3] + w * (T[5] + w * (T[7] + w * (T[9] +
973f708241SDavid Schultz 		w * T[11]))));
983f708241SDavid Schultz 	v = z * (T[2] + w * (T[4] + w * (T[6] + w * (T[8] + w * (T[10] +
993f708241SDavid Schultz 		w * T[12])))));
1003a8617a8SJordan K. Hubbard 	s = z * x;
1013a8617a8SJordan K. Hubbard 	r = y + z * (s * (r + v) + y);
1023a8617a8SJordan K. Hubbard 	r += T[0] * s;
1033a8617a8SJordan K. Hubbard 	w = x + r;
1043a8617a8SJordan K. Hubbard 	if (ix >= 0x3FE59428) {
1053a8617a8SJordan K. Hubbard 		v = (double) iy;
1063f708241SDavid Schultz 		return (double) (1 - ((hx >> 30) & 2)) *
1073f708241SDavid Schultz 			(v - 2.0 * (x - (w * w / (w + v) - r)));
1083a8617a8SJordan K. Hubbard 	}
1093f708241SDavid Schultz 	if (iy == 1)
1103f708241SDavid Schultz 		return w;
1113f708241SDavid Schultz 	else {
1123f708241SDavid Schultz 		/*
1133f708241SDavid Schultz 		 * if allow error up to 2 ulp, simply return
1143f708241SDavid Schultz 		 * -1.0 / (x+r) here
1153f708241SDavid Schultz 		 */
1163a8617a8SJordan K. Hubbard 		/* compute -1.0 / (x+r) accurately */
1173a8617a8SJordan K. Hubbard 		double a, t;
1183a8617a8SJordan K. Hubbard 		z = w;
1193a8617a8SJordan K. Hubbard 		SET_LOW_WORD(z,0);
1203a8617a8SJordan K. Hubbard 		v = r - (z - x);	/* z+v = r+x */
1213a8617a8SJordan K. Hubbard 		t = a = -1.0 / w;	/* a = -1.0/w */
1223a8617a8SJordan K. Hubbard 		SET_LOW_WORD(t,0);
1233a8617a8SJordan K. Hubbard 		s = 1.0 + t * z;
1243a8617a8SJordan K. Hubbard 		return t + a * (s + t * v);
1253a8617a8SJordan K. Hubbard 	}
1263a8617a8SJordan K. Hubbard }
127