1 2 /* @(#)k_sin.c 1.3 95/01/18 */ 3 /* 4 * ==================================================== 5 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. 6 * 7 * Developed at SunSoft, a Sun Microsystems, Inc. business. 8 * Permission to use, copy, modify, and distribute this 9 * software is freely granted, provided that this notice 10 * is preserved. 11 * ==================================================== 12 */ 13 14 #include <sys/cdefs.h> 15 /* __kernel_sin( x, y, iy) 16 * kernel sin function on ~[-pi/4, pi/4] (except on -0), pi/4 ~ 0.7854 17 * Input x is assumed to be bounded by ~pi/4 in magnitude. 18 * Input y is the tail of x. 19 * Input iy indicates whether y is 0. (if iy=0, y assume to be 0). 20 * 21 * Algorithm 22 * 1. Since sin(-x) = -sin(x), we need only to consider positive x. 23 * 2. Callers must return sin(-0) = -0 without calling here since our 24 * odd polynomial is not evaluated in a way that preserves -0. 25 * Callers may do the optimization sin(x) ~ x for tiny x. 26 * 3. sin(x) is approximated by a polynomial of degree 13 on 27 * [0,pi/4] 28 * 3 13 29 * sin(x) ~ x + S1*x + ... + S6*x 30 * where 31 * 32 * |sin(x) 2 4 6 8 10 12 | -58 33 * |----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x +S6*x )| <= 2 34 * | x | 35 * 36 * 4. sin(x+y) = sin(x) + sin'(x')*y 37 * ~ sin(x) + (1-x*x/2)*y 38 * For better accuracy, let 39 * 3 2 2 2 2 40 * r = x *(S2+x *(S3+x *(S4+x *(S5+x *S6)))) 41 * then 3 2 42 * sin(x) = x + (S1*x + (x *(r-y/2)+y)) 43 */ 44 45 #include "math.h" 46 #include "math_private.h" 47 48 static const double 49 half = 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */ 50 S1 = -1.66666666666666324348e-01, /* 0xBFC55555, 0x55555549 */ 51 S2 = 8.33333333332248946124e-03, /* 0x3F811111, 0x1110F8A6 */ 52 S3 = -1.98412698298579493134e-04, /* 0xBF2A01A0, 0x19C161D5 */ 53 S4 = 2.75573137070700676789e-06, /* 0x3EC71DE3, 0x57B1FE7D */ 54 S5 = -2.50507602534068634195e-08, /* 0xBE5AE5E6, 0x8A2B9CEB */ 55 S6 = 1.58969099521155010221e-10; /* 0x3DE5D93A, 0x5ACFD57C */ 56 57 double 58 __kernel_sin(double x, double y, int iy) 59 { 60 double z,r,v,w; 61 62 z = x*x; 63 w = z*z; 64 r = S2+z*(S3+z*S4) + z*w*(S5+z*S6); 65 v = z*x; 66 if(iy==0) return x+v*(S1+z*r); 67 else return x-((z*(half*y-v*r)-y)-v*S1); 68 } 69