1 2 /* @(#)k_rem_pio2.c 1.3 95/01/18 */ 3 /* 4 * ==================================================== 5 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. 6 * 7 * Developed at SunSoft, a Sun Microsystems, Inc. business. 8 * Permission to use, copy, modify, and distribute this 9 * software is freely granted, provided that this notice 10 * is preserved. 11 * ==================================================== 12 */ 13 14 #include <sys/cdefs.h> 15 __FBSDID("$FreeBSD$"); 16 17 /* 18 * __kernel_rem_pio2(x,y,e0,nx,prec) 19 * double x[],y[]; int e0,nx,prec; 20 * 21 * __kernel_rem_pio2 return the last three digits of N with 22 * y = x - N*pi/2 23 * so that |y| < pi/2. 24 * 25 * The method is to compute the integer (mod 8) and fraction parts of 26 * (2/pi)*x without doing the full multiplication. In general we 27 * skip the part of the product that are known to be a huge integer ( 28 * more accurately, = 0 mod 8 ). Thus the number of operations are 29 * independent of the exponent of the input. 30 * 31 * (2/pi) is represented by an array of 24-bit integers in ipio2[]. 32 * 33 * Input parameters: 34 * x[] The input value (must be positive) is broken into nx 35 * pieces of 24-bit integers in double precision format. 36 * x[i] will be the i-th 24 bit of x. The scaled exponent 37 * of x[0] is given in input parameter e0 (i.e., x[0]*2^e0 38 * match x's up to 24 bits. 39 * 40 * Example of breaking a double positive z into x[0]+x[1]+x[2]: 41 * e0 = ilogb(z)-23 42 * z = scalbn(z,-e0) 43 * for i = 0,1,2 44 * x[i] = floor(z) 45 * z = (z-x[i])*2**24 46 * 47 * 48 * y[] ouput result in an array of double precision numbers. 49 * The dimension of y[] is: 50 * 24-bit precision 1 51 * 53-bit precision 2 52 * 64-bit precision 2 53 * 113-bit precision 3 54 * The actual value is the sum of them. Thus for 113-bit 55 * precison, one may have to do something like: 56 * 57 * long double t,w,r_head, r_tail; 58 * t = (long double)y[2] + (long double)y[1]; 59 * w = (long double)y[0]; 60 * r_head = t+w; 61 * r_tail = w - (r_head - t); 62 * 63 * e0 The exponent of x[0]. Must be <= 16360 or you need to 64 * expand the ipio2 table. 65 * 66 * nx dimension of x[] 67 * 68 * prec an integer indicating the precision: 69 * 0 24 bits (single) 70 * 1 53 bits (double) 71 * 2 64 bits (extended) 72 * 3 113 bits (quad) 73 * 74 * External function: 75 * double scalbn(), floor(); 76 * 77 * 78 * Here is the description of some local variables: 79 * 80 * jk jk+1 is the initial number of terms of ipio2[] needed 81 * in the computation. The minimum and recommended value 82 * for jk is 3,4,4,6 for single, double, extended, and quad. 83 * jk+1 must be 2 larger than you might expect so that our 84 * recomputation test works. (Up to 24 bits in the integer 85 * part (the 24 bits of it that we compute) and 23 bits in 86 * the fraction part may be lost to cancelation before we 87 * recompute.) 88 * 89 * jz local integer variable indicating the number of 90 * terms of ipio2[] used. 91 * 92 * jx nx - 1 93 * 94 * jv index for pointing to the suitable ipio2[] for the 95 * computation. In general, we want 96 * ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8 97 * is an integer. Thus 98 * e0-3-24*jv >= 0 or (e0-3)/24 >= jv 99 * Hence jv = max(0,(e0-3)/24). 100 * 101 * jp jp+1 is the number of terms in PIo2[] needed, jp = jk. 102 * 103 * q[] double array with integral value, representing the 104 * 24-bits chunk of the product of x and 2/pi. 105 * 106 * q0 the corresponding exponent of q[0]. Note that the 107 * exponent for q[i] would be q0-24*i. 108 * 109 * PIo2[] double precision array, obtained by cutting pi/2 110 * into 24 bits chunks. 111 * 112 * f[] ipio2[] in floating point 113 * 114 * iq[] integer array by breaking up q[] in 24-bits chunk. 115 * 116 * fq[] final product of x*(2/pi) in fq[0],..,fq[jk] 117 * 118 * ih integer. If >0 it indicates q[] is >= 0.5, hence 119 * it also indicates the *sign* of the result. 120 * 121 */ 122 123 124 /* 125 * Constants: 126 * The hexadecimal values are the intended ones for the following 127 * constants. The decimal values may be used, provided that the 128 * compiler will convert from decimal to binary accurately enough 129 * to produce the hexadecimal values shown. 130 */ 131 132 #include <float.h> 133 134 #include "math.h" 135 #include "math_private.h" 136 137 static const int init_jk[] = {3,4,4,6}; /* initial value for jk */ 138 139 /* 140 * Table of constants for 2/pi, 396 Hex digits (476 decimal) of 2/pi 141 * 142 * integer array, contains the (24*i)-th to (24*i+23)-th 143 * bit of 2/pi after binary point. The corresponding 144 * floating value is 145 * 146 * ipio2[i] * 2^(-24(i+1)). 147 * 148 * NB: This table must have at least (e0-3)/24 + jk terms. 149 * For quad precision (e0 <= 16360, jk = 6), this is 686. 150 */ 151 static const int32_t ipio2[] = { 152 0xA2F983, 0x6E4E44, 0x1529FC, 0x2757D1, 0xF534DD, 0xC0DB62, 153 0x95993C, 0x439041, 0xFE5163, 0xABDEBB, 0xC561B7, 0x246E3A, 154 0x424DD2, 0xE00649, 0x2EEA09, 0xD1921C, 0xFE1DEB, 0x1CB129, 155 0xA73EE8, 0x8235F5, 0x2EBB44, 0x84E99C, 0x7026B4, 0x5F7E41, 156 0x3991D6, 0x398353, 0x39F49C, 0x845F8B, 0xBDF928, 0x3B1FF8, 157 0x97FFDE, 0x05980F, 0xEF2F11, 0x8B5A0A, 0x6D1F6D, 0x367ECF, 158 0x27CB09, 0xB74F46, 0x3F669E, 0x5FEA2D, 0x7527BA, 0xC7EBE5, 159 0xF17B3D, 0x0739F7, 0x8A5292, 0xEA6BFB, 0x5FB11F, 0x8D5D08, 160 0x560330, 0x46FC7B, 0x6BABF0, 0xCFBC20, 0x9AF436, 0x1DA9E3, 161 0x91615E, 0xE61B08, 0x659985, 0x5F14A0, 0x68408D, 0xFFD880, 162 0x4D7327, 0x310606, 0x1556CA, 0x73A8C9, 0x60E27B, 0xC08C6B, 163 164 #if LDBL_MAX_EXP > 1024 165 #if LDBL_MAX_EXP > 16384 166 #error "ipio2 table needs to be expanded" 167 #endif 168 0x47C419, 0xC367CD, 0xDCE809, 0x2A8359, 0xC4768B, 0x961CA6, 169 0xDDAF44, 0xD15719, 0x053EA5, 0xFF0705, 0x3F7E33, 0xE832C2, 170 0xDE4F98, 0x327DBB, 0xC33D26, 0xEF6B1E, 0x5EF89F, 0x3A1F35, 171 0xCAF27F, 0x1D87F1, 0x21907C, 0x7C246A, 0xFA6ED5, 0x772D30, 172 0x433B15, 0xC614B5, 0x9D19C3, 0xC2C4AD, 0x414D2C, 0x5D000C, 173 0x467D86, 0x2D71E3, 0x9AC69B, 0x006233, 0x7CD2B4, 0x97A7B4, 174 0xD55537, 0xF63ED7, 0x1810A3, 0xFC764D, 0x2A9D64, 0xABD770, 175 0xF87C63, 0x57B07A, 0xE71517, 0x5649C0, 0xD9D63B, 0x3884A7, 176 0xCB2324, 0x778AD6, 0x23545A, 0xB91F00, 0x1B0AF1, 0xDFCE19, 177 0xFF319F, 0x6A1E66, 0x615799, 0x47FBAC, 0xD87F7E, 0xB76522, 178 0x89E832, 0x60BFE6, 0xCDC4EF, 0x09366C, 0xD43F5D, 0xD7DE16, 179 0xDE3B58, 0x929BDE, 0x2822D2, 0xE88628, 0x4D58E2, 0x32CAC6, 180 0x16E308, 0xCB7DE0, 0x50C017, 0xA71DF3, 0x5BE018, 0x34132E, 181 0x621283, 0x014883, 0x5B8EF5, 0x7FB0AD, 0xF2E91E, 0x434A48, 182 0xD36710, 0xD8DDAA, 0x425FAE, 0xCE616A, 0xA4280A, 0xB499D3, 183 0xF2A606, 0x7F775C, 0x83C2A3, 0x883C61, 0x78738A, 0x5A8CAF, 184 0xBDD76F, 0x63A62D, 0xCBBFF4, 0xEF818D, 0x67C126, 0x45CA55, 185 0x36D9CA, 0xD2A828, 0x8D61C2, 0x77C912, 0x142604, 0x9B4612, 186 0xC459C4, 0x44C5C8, 0x91B24D, 0xF31700, 0xAD43D4, 0xE54929, 187 0x10D5FD, 0xFCBE00, 0xCC941E, 0xEECE70, 0xF53E13, 0x80F1EC, 188 0xC3E7B3, 0x28F8C7, 0x940593, 0x3E71C1, 0xB3092E, 0xF3450B, 189 0x9C1288, 0x7B20AB, 0x9FB52E, 0xC29247, 0x2F327B, 0x6D550C, 190 0x90A772, 0x1FE76B, 0x96CB31, 0x4A1679, 0xE27941, 0x89DFF4, 191 0x9794E8, 0x84E6E2, 0x973199, 0x6BED88, 0x365F5F, 0x0EFDBB, 192 0xB49A48, 0x6CA467, 0x427271, 0x325D8D, 0xB8159F, 0x09E5BC, 193 0x25318D, 0x3974F7, 0x1C0530, 0x010C0D, 0x68084B, 0x58EE2C, 194 0x90AA47, 0x02E774, 0x24D6BD, 0xA67DF7, 0x72486E, 0xEF169F, 195 0xA6948E, 0xF691B4, 0x5153D1, 0xF20ACF, 0x339820, 0x7E4BF5, 196 0x6863B2, 0x5F3EDD, 0x035D40, 0x7F8985, 0x295255, 0xC06437, 197 0x10D86D, 0x324832, 0x754C5B, 0xD4714E, 0x6E5445, 0xC1090B, 198 0x69F52A, 0xD56614, 0x9D0727, 0x50045D, 0xDB3BB4, 0xC576EA, 199 0x17F987, 0x7D6B49, 0xBA271D, 0x296996, 0xACCCC6, 0x5414AD, 200 0x6AE290, 0x89D988, 0x50722C, 0xBEA404, 0x940777, 0x7030F3, 201 0x27FC00, 0xA871EA, 0x49C266, 0x3DE064, 0x83DD97, 0x973FA3, 202 0xFD9443, 0x8C860D, 0xDE4131, 0x9D3992, 0x8C70DD, 0xE7B717, 203 0x3BDF08, 0x2B3715, 0xA0805C, 0x93805A, 0x921110, 0xD8E80F, 204 0xAF806C, 0x4BFFDB, 0x0F9038, 0x761859, 0x15A562, 0xBBCB61, 205 0xB989C7, 0xBD4010, 0x04F2D2, 0x277549, 0xF6B6EB, 0xBB22DB, 206 0xAA140A, 0x2F2689, 0x768364, 0x333B09, 0x1A940E, 0xAA3A51, 207 0xC2A31D, 0xAEEDAF, 0x12265C, 0x4DC26D, 0x9C7A2D, 0x9756C0, 208 0x833F03, 0xF6F009, 0x8C402B, 0x99316D, 0x07B439, 0x15200C, 209 0x5BC3D8, 0xC492F5, 0x4BADC6, 0xA5CA4E, 0xCD37A7, 0x36A9E6, 210 0x9492AB, 0x6842DD, 0xDE6319, 0xEF8C76, 0x528B68, 0x37DBFC, 211 0xABA1AE, 0x3115DF, 0xA1AE00, 0xDAFB0C, 0x664D64, 0xB705ED, 212 0x306529, 0xBF5657, 0x3AFF47, 0xB9F96A, 0xF3BE75, 0xDF9328, 213 0x3080AB, 0xF68C66, 0x15CB04, 0x0622FA, 0x1DE4D9, 0xA4B33D, 214 0x8F1B57, 0x09CD36, 0xE9424E, 0xA4BE13, 0xB52333, 0x1AAAF0, 215 0xA8654F, 0xA5C1D2, 0x0F3F0B, 0xCD785B, 0x76F923, 0x048B7B, 216 0x721789, 0x53A6C6, 0xE26E6F, 0x00EBEF, 0x584A9B, 0xB7DAC4, 217 0xBA66AA, 0xCFCF76, 0x1D02D1, 0x2DF1B1, 0xC1998C, 0x77ADC3, 218 0xDA4886, 0xA05DF7, 0xF480C6, 0x2FF0AC, 0x9AECDD, 0xBC5C3F, 219 0x6DDED0, 0x1FC790, 0xB6DB2A, 0x3A25A3, 0x9AAF00, 0x9353AD, 220 0x0457B6, 0xB42D29, 0x7E804B, 0xA707DA, 0x0EAA76, 0xA1597B, 221 0x2A1216, 0x2DB7DC, 0xFDE5FA, 0xFEDB89, 0xFDBE89, 0x6C76E4, 222 0xFCA906, 0x70803E, 0x156E85, 0xFF87FD, 0x073E28, 0x336761, 223 0x86182A, 0xEABD4D, 0xAFE7B3, 0x6E6D8F, 0x396795, 0x5BBF31, 224 0x48D784, 0x16DF30, 0x432DC7, 0x356125, 0xCE70C9, 0xB8CB30, 225 0xFD6CBF, 0xA200A4, 0xE46C05, 0xA0DD5A, 0x476F21, 0xD21262, 226 0x845CB9, 0x496170, 0xE0566B, 0x015299, 0x375550, 0xB7D51E, 227 0xC4F133, 0x5F6E13, 0xE4305D, 0xA92E85, 0xC3B21D, 0x3632A1, 228 0xA4B708, 0xD4B1EA, 0x21F716, 0xE4698F, 0x77FF27, 0x80030C, 229 0x2D408D, 0xA0CD4F, 0x99A520, 0xD3A2B3, 0x0A5D2F, 0x42F9B4, 230 0xCBDA11, 0xD0BE7D, 0xC1DB9B, 0xBD17AB, 0x81A2CA, 0x5C6A08, 231 0x17552E, 0x550027, 0xF0147F, 0x8607E1, 0x640B14, 0x8D4196, 232 0xDEBE87, 0x2AFDDA, 0xB6256B, 0x34897B, 0xFEF305, 0x9EBFB9, 233 0x4F6A68, 0xA82A4A, 0x5AC44F, 0xBCF82D, 0x985AD7, 0x95C7F4, 234 0x8D4D0D, 0xA63A20, 0x5F57A4, 0xB13F14, 0x953880, 0x0120CC, 235 0x86DD71, 0xB6DEC9, 0xF560BF, 0x11654D, 0x6B0701, 0xACB08C, 236 0xD0C0B2, 0x485551, 0x0EFB1E, 0xC37295, 0x3B06A3, 0x3540C0, 237 0x7BDC06, 0xCC45E0, 0xFA294E, 0xC8CAD6, 0x41F3E8, 0xDE647C, 238 0xD8649B, 0x31BED9, 0xC397A4, 0xD45877, 0xC5E369, 0x13DAF0, 239 0x3C3ABA, 0x461846, 0x5F7555, 0xF5BDD2, 0xC6926E, 0x5D2EAC, 240 0xED440E, 0x423E1C, 0x87C461, 0xE9FD29, 0xF3D6E7, 0xCA7C22, 241 0x35916F, 0xC5E008, 0x8DD7FF, 0xE26A6E, 0xC6FDB0, 0xC10893, 242 0x745D7C, 0xB2AD6B, 0x9D6ECD, 0x7B723E, 0x6A11C6, 0xA9CFF7, 243 0xDF7329, 0xBAC9B5, 0x5100B7, 0x0DB2E2, 0x24BA74, 0x607DE5, 244 0x8AD874, 0x2C150D, 0x0C1881, 0x94667E, 0x162901, 0x767A9F, 245 0xBEFDFD, 0xEF4556, 0x367ED9, 0x13D9EC, 0xB9BA8B, 0xFC97C4, 246 0x27A831, 0xC36EF1, 0x36C594, 0x56A8D8, 0xB5A8B4, 0x0ECCCF, 247 0x2D8912, 0x34576F, 0x89562C, 0xE3CE99, 0xB920D6, 0xAA5E6B, 248 0x9C2A3E, 0xCC5F11, 0x4A0BFD, 0xFBF4E1, 0x6D3B8E, 0x2C86E2, 249 0x84D4E9, 0xA9B4FC, 0xD1EEEF, 0xC9352E, 0x61392F, 0x442138, 250 0xC8D91B, 0x0AFC81, 0x6A4AFB, 0xD81C2F, 0x84B453, 0x8C994E, 251 0xCC2254, 0xDC552A, 0xD6C6C0, 0x96190B, 0xB8701A, 0x649569, 252 0x605A26, 0xEE523F, 0x0F117F, 0x11B5F4, 0xF5CBFC, 0x2DBC34, 253 0xEEBC34, 0xCC5DE8, 0x605EDD, 0x9B8E67, 0xEF3392, 0xB817C9, 254 0x9B5861, 0xBC57E1, 0xC68351, 0x103ED8, 0x4871DD, 0xDD1C2D, 255 0xA118AF, 0x462C21, 0xD7F359, 0x987AD9, 0xC0549E, 0xFA864F, 256 0xFC0656, 0xAE79E5, 0x362289, 0x22AD38, 0xDC9367, 0xAAE855, 257 0x382682, 0x9BE7CA, 0xA40D51, 0xB13399, 0x0ED7A9, 0x480569, 258 0xF0B265, 0xA7887F, 0x974C88, 0x36D1F9, 0xB39221, 0x4A827B, 259 0x21CF98, 0xDC9F40, 0x5547DC, 0x3A74E1, 0x42EB67, 0xDF9DFE, 260 0x5FD45E, 0xA4677B, 0x7AACBA, 0xA2F655, 0x23882B, 0x55BA41, 261 0x086E59, 0x862A21, 0x834739, 0xE6E389, 0xD49EE5, 0x40FB49, 262 0xE956FF, 0xCA0F1C, 0x8A59C5, 0x2BFA94, 0xC5C1D3, 0xCFC50F, 263 0xAE5ADB, 0x86C547, 0x624385, 0x3B8621, 0x94792C, 0x876110, 264 0x7B4C2A, 0x1A2C80, 0x12BF43, 0x902688, 0x893C78, 0xE4C4A8, 265 0x7BDBE5, 0xC23AC4, 0xEAF426, 0x8A67F7, 0xBF920D, 0x2BA365, 266 0xB1933D, 0x0B7CBD, 0xDC51A4, 0x63DD27, 0xDDE169, 0x19949A, 267 0x9529A8, 0x28CE68, 0xB4ED09, 0x209F44, 0xCA984E, 0x638270, 268 0x237C7E, 0x32B90F, 0x8EF5A7, 0xE75614, 0x08F121, 0x2A9DB5, 269 0x4D7E6F, 0x5119A5, 0xABF9B5, 0xD6DF82, 0x61DD96, 0x023616, 270 0x9F3AC4, 0xA1A283, 0x6DED72, 0x7A8D39, 0xA9B882, 0x5C326B, 271 0x5B2746, 0xED3400, 0x7700D2, 0x55F4FC, 0x4D5901, 0x8071E0, 272 #endif 273 274 }; 275 276 static const double PIo2[] = { 277 1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */ 278 7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */ 279 5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */ 280 3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */ 281 1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */ 282 1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */ 283 2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */ 284 2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */ 285 }; 286 287 static const double 288 zero = 0.0, 289 one = 1.0, 290 two24 = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */ 291 twon24 = 5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */ 292 293 int 294 __kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec) 295 { 296 int32_t jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih; 297 double z,fw,f[20],fq[20],q[20]; 298 299 /* initialize jk*/ 300 jk = init_jk[prec]; 301 jp = jk; 302 303 /* determine jx,jv,q0, note that 3>q0 */ 304 jx = nx-1; 305 jv = (e0-3)/24; if(jv<0) jv=0; 306 q0 = e0-24*(jv+1); 307 308 /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */ 309 j = jv-jx; m = jx+jk; 310 for(i=0;i<=m;i++,j++) f[i] = (j<0)? zero : (double) ipio2[j]; 311 312 /* compute q[0],q[1],...q[jk] */ 313 for (i=0;i<=jk;i++) { 314 for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; q[i] = fw; 315 } 316 317 jz = jk; 318 recompute: 319 /* distill q[] into iq[] reversingly */ 320 for(i=0,j=jz,z=q[jz];j>0;i++,j--) { 321 fw = (double)((int32_t)(twon24* z)); 322 iq[i] = (int32_t)(z-two24*fw); 323 z = q[j-1]+fw; 324 } 325 326 /* compute n */ 327 z = scalbn(z,q0); /* actual value of z */ 328 z -= 8.0*floor(z*0.125); /* trim off integer >= 8 */ 329 n = (int32_t) z; 330 z -= (double)n; 331 ih = 0; 332 if(q0>0) { /* need iq[jz-1] to determine n */ 333 i = (iq[jz-1]>>(24-q0)); n += i; 334 iq[jz-1] -= i<<(24-q0); 335 ih = iq[jz-1]>>(23-q0); 336 } 337 else if(q0==0) ih = iq[jz-1]>>23; 338 else if(z>=0.5) ih=2; 339 340 if(ih>0) { /* q > 0.5 */ 341 n += 1; carry = 0; 342 for(i=0;i<jz ;i++) { /* compute 1-q */ 343 j = iq[i]; 344 if(carry==0) { 345 if(j!=0) { 346 carry = 1; iq[i] = 0x1000000- j; 347 } 348 } else iq[i] = 0xffffff - j; 349 } 350 if(q0>0) { /* rare case: chance is 1 in 12 */ 351 switch(q0) { 352 case 1: 353 iq[jz-1] &= 0x7fffff; break; 354 case 2: 355 iq[jz-1] &= 0x3fffff; break; 356 } 357 } 358 if(ih==2) { 359 z = one - z; 360 if(carry!=0) z -= scalbn(one,q0); 361 } 362 } 363 364 /* check if recomputation is needed */ 365 if(z==zero) { 366 j = 0; 367 for (i=jz-1;i>=jk;i--) j |= iq[i]; 368 if(j==0) { /* need recomputation */ 369 for(k=1;iq[jk-k]==0;k++); /* k = no. of terms needed */ 370 371 for(i=jz+1;i<=jz+k;i++) { /* add q[jz+1] to q[jz+k] */ 372 f[jx+i] = (double) ipio2[jv+i]; 373 for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; 374 q[i] = fw; 375 } 376 jz += k; 377 goto recompute; 378 } 379 } 380 381 /* chop off zero terms */ 382 if(z==0.0) { 383 jz -= 1; q0 -= 24; 384 while(iq[jz]==0) { jz--; q0-=24;} 385 } else { /* break z into 24-bit if necessary */ 386 z = scalbn(z,-q0); 387 if(z>=two24) { 388 fw = (double)((int32_t)(twon24*z)); 389 iq[jz] = (int32_t)(z-two24*fw); 390 jz += 1; q0 += 24; 391 iq[jz] = (int32_t) fw; 392 } else iq[jz] = (int32_t) z ; 393 } 394 395 /* convert integer "bit" chunk to floating-point value */ 396 fw = scalbn(one,q0); 397 for(i=jz;i>=0;i--) { 398 q[i] = fw*(double)iq[i]; fw*=twon24; 399 } 400 401 /* compute PIo2[0,...,jp]*q[jz,...,0] */ 402 for(i=jz;i>=0;i--) { 403 for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k]; 404 fq[jz-i] = fw; 405 } 406 407 /* compress fq[] into y[] */ 408 switch(prec) { 409 case 0: 410 fw = 0.0; 411 for (i=jz;i>=0;i--) fw += fq[i]; 412 y[0] = (ih==0)? fw: -fw; 413 break; 414 case 1: 415 case 2: 416 fw = 0.0; 417 for (i=jz;i>=0;i--) fw += fq[i]; 418 STRICT_ASSIGN(double,fw,fw); 419 y[0] = (ih==0)? fw: -fw; 420 fw = fq[0]-fw; 421 for (i=1;i<=jz;i++) fw += fq[i]; 422 y[1] = (ih==0)? fw: -fw; 423 break; 424 case 3: /* painful */ 425 for (i=jz;i>0;i--) { 426 fw = fq[i-1]+fq[i]; 427 fq[i] += fq[i-1]-fw; 428 fq[i-1] = fw; 429 } 430 for (i=jz;i>1;i--) { 431 fw = fq[i-1]+fq[i]; 432 fq[i] += fq[i-1]-fw; 433 fq[i-1] = fw; 434 } 435 for (fw=0.0,i=jz;i>=2;i--) fw += fq[i]; 436 if(ih==0) { 437 y[0] = fq[0]; y[1] = fq[1]; y[2] = fw; 438 } else { 439 y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw; 440 } 441 } 442 return n&7; 443 } 444