1 /* @(#)k_rem_pio2.c 5.1 93/09/24 */ 2 /* 3 * ==================================================== 4 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. 5 * 6 * Developed at SunPro, a Sun Microsystems, Inc. business. 7 * Permission to use, copy, modify, and distribute this 8 * software is freely granted, provided that this notice 9 * is preserved. 10 * ==================================================== 11 */ 12 13 #ifndef lint 14 static char rcsid[] = "$FreeBSD$"; 15 #endif 16 17 /* 18 * __kernel_rem_pio2(x,y,e0,nx,prec,ipio2) 19 * double x[],y[]; int e0,nx,prec; int ipio2[]; 20 * 21 * __kernel_rem_pio2 return the last three digits of N with 22 * y = x - N*pi/2 23 * so that |y| < pi/2. 24 * 25 * The method is to compute the integer (mod 8) and fraction parts of 26 * (2/pi)*x without doing the full multiplication. In general we 27 * skip the part of the product that are known to be a huge integer ( 28 * more accurately, = 0 mod 8 ). Thus the number of operations are 29 * independent of the exponent of the input. 30 * 31 * (2/pi) is represented by an array of 24-bit integers in ipio2[]. 32 * 33 * Input parameters: 34 * x[] The input value (must be positive) is broken into nx 35 * pieces of 24-bit integers in double precision format. 36 * x[i] will be the i-th 24 bit of x. The scaled exponent 37 * of x[0] is given in input parameter e0 (i.e., x[0]*2^e0 38 * match x's up to 24 bits. 39 * 40 * Example of breaking a double positive z into x[0]+x[1]+x[2]: 41 * e0 = ilogb(z)-23 42 * z = scalbn(z,-e0) 43 * for i = 0,1,2 44 * x[i] = floor(z) 45 * z = (z-x[i])*2**24 46 * 47 * 48 * y[] ouput result in an array of double precision numbers. 49 * The dimension of y[] is: 50 * 24-bit precision 1 51 * 53-bit precision 2 52 * 64-bit precision 2 53 * 113-bit precision 3 54 * The actual value is the sum of them. Thus for 113-bit 55 * precison, one may have to do something like: 56 * 57 * long double t,w,r_head, r_tail; 58 * t = (long double)y[2] + (long double)y[1]; 59 * w = (long double)y[0]; 60 * r_head = t+w; 61 * r_tail = w - (r_head - t); 62 * 63 * e0 The exponent of x[0] 64 * 65 * nx dimension of x[] 66 * 67 * prec an integer indicating the precision: 68 * 0 24 bits (single) 69 * 1 53 bits (double) 70 * 2 64 bits (extended) 71 * 3 113 bits (quad) 72 * 73 * ipio2[] 74 * integer array, contains the (24*i)-th to (24*i+23)-th 75 * bit of 2/pi after binary point. The corresponding 76 * floating value is 77 * 78 * ipio2[i] * 2^(-24(i+1)). 79 * 80 * External function: 81 * double scalbn(), floor(); 82 * 83 * 84 * Here is the description of some local variables: 85 * 86 * jk jk+1 is the initial number of terms of ipio2[] needed 87 * in the computation. The recommended value is 2,3,4, 88 * 6 for single, double, extended,and quad. 89 * 90 * jz local integer variable indicating the number of 91 * terms of ipio2[] used. 92 * 93 * jx nx - 1 94 * 95 * jv index for pointing to the suitable ipio2[] for the 96 * computation. In general, we want 97 * ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8 98 * is an integer. Thus 99 * e0-3-24*jv >= 0 or (e0-3)/24 >= jv 100 * Hence jv = max(0,(e0-3)/24). 101 * 102 * jp jp+1 is the number of terms in PIo2[] needed, jp = jk. 103 * 104 * q[] double array with integral value, representing the 105 * 24-bits chunk of the product of x and 2/pi. 106 * 107 * q0 the corresponding exponent of q[0]. Note that the 108 * exponent for q[i] would be q0-24*i. 109 * 110 * PIo2[] double precision array, obtained by cutting pi/2 111 * into 24 bits chunks. 112 * 113 * f[] ipio2[] in floating point 114 * 115 * iq[] integer array by breaking up q[] in 24-bits chunk. 116 * 117 * fq[] final product of x*(2/pi) in fq[0],..,fq[jk] 118 * 119 * ih integer. If >0 it indicates q[] is >= 0.5, hence 120 * it also indicates the *sign* of the result. 121 * 122 */ 123 124 125 /* 126 * Constants: 127 * The hexadecimal values are the intended ones for the following 128 * constants. The decimal values may be used, provided that the 129 * compiler will convert from decimal to binary accurately enough 130 * to produce the hexadecimal values shown. 131 */ 132 133 #include "math.h" 134 #include "math_private.h" 135 136 #ifdef __STDC__ 137 static const int init_jk[] = {2,3,4,6}; /* initial value for jk */ 138 #else 139 static int init_jk[] = {2,3,4,6}; 140 #endif 141 142 #ifdef __STDC__ 143 static const double PIo2[] = { 144 #else 145 static double PIo2[] = { 146 #endif 147 1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */ 148 7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */ 149 5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */ 150 3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */ 151 1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */ 152 1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */ 153 2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */ 154 2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */ 155 }; 156 157 #ifdef __STDC__ 158 static const double 159 #else 160 static double 161 #endif 162 zero = 0.0, 163 one = 1.0, 164 two24 = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */ 165 twon24 = 5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */ 166 167 #ifdef __STDC__ 168 int __kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec, const int32_t *ipio2) 169 #else 170 int __kernel_rem_pio2(x,y,e0,nx,prec,ipio2) 171 double x[], y[]; int e0,nx,prec; int32_t ipio2[]; 172 #endif 173 { 174 int32_t jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih; 175 double z,fw,f[20],fq[20],q[20]; 176 177 /* initialize jk*/ 178 jk = init_jk[prec]; 179 jp = jk; 180 181 /* determine jx,jv,q0, note that 3>q0 */ 182 jx = nx-1; 183 jv = (e0-3)/24; if(jv<0) jv=0; 184 q0 = e0-24*(jv+1); 185 186 /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */ 187 j = jv-jx; m = jx+jk; 188 for(i=0;i<=m;i++,j++) f[i] = (j<0)? zero : (double) ipio2[j]; 189 190 /* compute q[0],q[1],...q[jk] */ 191 for (i=0;i<=jk;i++) { 192 for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; q[i] = fw; 193 } 194 195 jz = jk; 196 recompute: 197 /* distill q[] into iq[] reversingly */ 198 for(i=0,j=jz,z=q[jz];j>0;i++,j--) { 199 fw = (double)((int32_t)(twon24* z)); 200 iq[i] = (int32_t)(z-two24*fw); 201 z = q[j-1]+fw; 202 } 203 204 /* compute n */ 205 z = scalbn(z,q0); /* actual value of z */ 206 z -= 8.0*floor(z*0.125); /* trim off integer >= 8 */ 207 n = (int32_t) z; 208 z -= (double)n; 209 ih = 0; 210 if(q0>0) { /* need iq[jz-1] to determine n */ 211 i = (iq[jz-1]>>(24-q0)); n += i; 212 iq[jz-1] -= i<<(24-q0); 213 ih = iq[jz-1]>>(23-q0); 214 } 215 else if(q0==0) ih = iq[jz-1]>>23; 216 else if(z>=0.5) ih=2; 217 218 if(ih>0) { /* q > 0.5 */ 219 n += 1; carry = 0; 220 for(i=0;i<jz ;i++) { /* compute 1-q */ 221 j = iq[i]; 222 if(carry==0) { 223 if(j!=0) { 224 carry = 1; iq[i] = 0x1000000- j; 225 } 226 } else iq[i] = 0xffffff - j; 227 } 228 if(q0>0) { /* rare case: chance is 1 in 12 */ 229 switch(q0) { 230 case 1: 231 iq[jz-1] &= 0x7fffff; break; 232 case 2: 233 iq[jz-1] &= 0x3fffff; break; 234 } 235 } 236 if(ih==2) { 237 z = one - z; 238 if(carry!=0) z -= scalbn(one,q0); 239 } 240 } 241 242 /* check if recomputation is needed */ 243 if(z==zero) { 244 j = 0; 245 for (i=jz-1;i>=jk;i--) j |= iq[i]; 246 if(j==0) { /* need recomputation */ 247 for(k=1;iq[jk-k]==0;k++); /* k = no. of terms needed */ 248 249 for(i=jz+1;i<=jz+k;i++) { /* add q[jz+1] to q[jz+k] */ 250 f[jx+i] = (double) ipio2[jv+i]; 251 for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; 252 q[i] = fw; 253 } 254 jz += k; 255 goto recompute; 256 } 257 } 258 259 /* chop off zero terms */ 260 if(z==0.0) { 261 jz -= 1; q0 -= 24; 262 while(iq[jz]==0) { jz--; q0-=24;} 263 } else { /* break z into 24-bit if necessary */ 264 z = scalbn(z,-q0); 265 if(z>=two24) { 266 fw = (double)((int32_t)(twon24*z)); 267 iq[jz] = (int32_t)(z-two24*fw); 268 jz += 1; q0 += 24; 269 iq[jz] = (int32_t) fw; 270 } else iq[jz] = (int32_t) z ; 271 } 272 273 /* convert integer "bit" chunk to floating-point value */ 274 fw = scalbn(one,q0); 275 for(i=jz;i>=0;i--) { 276 q[i] = fw*(double)iq[i]; fw*=twon24; 277 } 278 279 /* compute PIo2[0,...,jp]*q[jz,...,0] */ 280 for(i=jz;i>=0;i--) { 281 for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k]; 282 fq[jz-i] = fw; 283 } 284 285 /* compress fq[] into y[] */ 286 switch(prec) { 287 case 0: 288 fw = 0.0; 289 for (i=jz;i>=0;i--) fw += fq[i]; 290 y[0] = (ih==0)? fw: -fw; 291 break; 292 case 1: 293 case 2: 294 fw = 0.0; 295 for (i=jz;i>=0;i--) fw += fq[i]; 296 y[0] = (ih==0)? fw: -fw; 297 fw = fq[0]-fw; 298 for (i=1;i<=jz;i++) fw += fq[i]; 299 y[1] = (ih==0)? fw: -fw; 300 break; 301 case 3: /* painful */ 302 for (i=jz;i>0;i--) { 303 fw = fq[i-1]+fq[i]; 304 fq[i] += fq[i-1]-fw; 305 fq[i-1] = fw; 306 } 307 for (i=jz;i>1;i--) { 308 fw = fq[i-1]+fq[i]; 309 fq[i] += fq[i-1]-fw; 310 fq[i-1] = fw; 311 } 312 for (fw=0.0,i=jz;i>=2;i--) fw += fq[i]; 313 if(ih==0) { 314 y[0] = fq[0]; y[1] = fq[1]; y[2] = fw; 315 } else { 316 y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw; 317 } 318 } 319 return n&7; 320 } 321