xref: /freebsd/lib/msun/src/k_rem_pio2.c (revision 963e8efffe4ab97233102e0e25f95061b6fefbe3)
1 
2 /* @(#)k_rem_pio2.c 1.3 95/01/18 */
3 /*
4  * ====================================================
5  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6  *
7  * Developed at SunSoft, a Sun Microsystems, Inc. business.
8  * Permission to use, copy, modify, and distribute this
9  * software is freely granted, provided that this notice
10  * is preserved.
11  * ====================================================
12  */
13 
14 #ifndef lint
15 static char rcsid[] = "$FreeBSD$";
16 #endif
17 
18 /*
19  * __kernel_rem_pio2(x,y,e0,nx,prec,ipio2)
20  * double x[],y[]; int e0,nx,prec; int ipio2[];
21  *
22  * __kernel_rem_pio2 return the last three digits of N with
23  *		y = x - N*pi/2
24  * so that |y| < pi/2.
25  *
26  * The method is to compute the integer (mod 8) and fraction parts of
27  * (2/pi)*x without doing the full multiplication. In general we
28  * skip the part of the product that are known to be a huge integer (
29  * more accurately, = 0 mod 8 ). Thus the number of operations are
30  * independent of the exponent of the input.
31  *
32  * (2/pi) is represented by an array of 24-bit integers in ipio2[].
33  *
34  * Input parameters:
35  * 	x[]	The input value (must be positive) is broken into nx
36  *		pieces of 24-bit integers in double precision format.
37  *		x[i] will be the i-th 24 bit of x. The scaled exponent
38  *		of x[0] is given in input parameter e0 (i.e., x[0]*2^e0
39  *		match x's up to 24 bits.
40  *
41  *		Example of breaking a double positive z into x[0]+x[1]+x[2]:
42  *			e0 = ilogb(z)-23
43  *			z  = scalbn(z,-e0)
44  *		for i = 0,1,2
45  *			x[i] = floor(z)
46  *			z    = (z-x[i])*2**24
47  *
48  *
49  *	y[]	ouput result in an array of double precision numbers.
50  *		The dimension of y[] is:
51  *			24-bit  precision	1
52  *			53-bit  precision	2
53  *			64-bit  precision	2
54  *			113-bit precision	3
55  *		The actual value is the sum of them. Thus for 113-bit
56  *		precison, one may have to do something like:
57  *
58  *		long double t,w,r_head, r_tail;
59  *		t = (long double)y[2] + (long double)y[1];
60  *		w = (long double)y[0];
61  *		r_head = t+w;
62  *		r_tail = w - (r_head - t);
63  *
64  *	e0	The exponent of x[0]
65  *
66  *	nx	dimension of x[]
67  *
68  *  	prec	an integer indicating the precision:
69  *			0	24  bits (single)
70  *			1	53  bits (double)
71  *			2	64  bits (extended)
72  *			3	113 bits (quad)
73  *
74  *	ipio2[]
75  *		integer array, contains the (24*i)-th to (24*i+23)-th
76  *		bit of 2/pi after binary point. The corresponding
77  *		floating value is
78  *
79  *			ipio2[i] * 2^(-24(i+1)).
80  *
81  * External function:
82  *	double scalbn(), floor();
83  *
84  *
85  * Here is the description of some local variables:
86  *
87  * 	jk	jk+1 is the initial number of terms of ipio2[] needed
88  *		in the computation. The recommended value is 2,3,4,
89  *		6 for single, double, extended,and quad.
90  *
91  * 	jz	local integer variable indicating the number of
92  *		terms of ipio2[] used.
93  *
94  *	jx	nx - 1
95  *
96  *	jv	index for pointing to the suitable ipio2[] for the
97  *		computation. In general, we want
98  *			( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8
99  *		is an integer. Thus
100  *			e0-3-24*jv >= 0 or (e0-3)/24 >= jv
101  *		Hence jv = max(0,(e0-3)/24).
102  *
103  *	jp	jp+1 is the number of terms in PIo2[] needed, jp = jk.
104  *
105  * 	q[]	double array with integral value, representing the
106  *		24-bits chunk of the product of x and 2/pi.
107  *
108  *	q0	the corresponding exponent of q[0]. Note that the
109  *		exponent for q[i] would be q0-24*i.
110  *
111  *	PIo2[]	double precision array, obtained by cutting pi/2
112  *		into 24 bits chunks.
113  *
114  *	f[]	ipio2[] in floating point
115  *
116  *	iq[]	integer array by breaking up q[] in 24-bits chunk.
117  *
118  *	fq[]	final product of x*(2/pi) in fq[0],..,fq[jk]
119  *
120  *	ih	integer. If >0 it indicates q[] is >= 0.5, hence
121  *		it also indicates the *sign* of the result.
122  *
123  */
124 
125 
126 /*
127  * Constants:
128  * The hexadecimal values are the intended ones for the following
129  * constants. The decimal values may be used, provided that the
130  * compiler will convert from decimal to binary accurately enough
131  * to produce the hexadecimal values shown.
132  */
133 
134 #include "math.h"
135 #include "math_private.h"
136 
137 static const int init_jk[] = {2,3,4,6}; /* initial value for jk */
138 
139 static const double PIo2[] = {
140   1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */
141   7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */
142   5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */
143   3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */
144   1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */
145   1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */
146   2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */
147   2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */
148 };
149 
150 static const double
151 zero   = 0.0,
152 one    = 1.0,
153 two24   =  1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */
154 twon24  =  5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */
155 
156 	int __kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec, const int32_t *ipio2)
157 {
158 	int32_t jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih;
159 	double z,fw,f[20],fq[20],q[20];
160 
161     /* initialize jk*/
162 	jk = init_jk[prec];
163 	jp = jk;
164 
165     /* determine jx,jv,q0, note that 3>q0 */
166 	jx =  nx-1;
167 	jv = (e0-3)/24; if(jv<0) jv=0;
168 	q0 =  e0-24*(jv+1);
169 
170     /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
171 	j = jv-jx; m = jx+jk;
172 	for(i=0;i<=m;i++,j++) f[i] = (j<0)? zero : (double) ipio2[j];
173 
174     /* compute q[0],q[1],...q[jk] */
175 	for (i=0;i<=jk;i++) {
176 	    for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; q[i] = fw;
177 	}
178 
179 	jz = jk;
180 recompute:
181     /* distill q[] into iq[] reversingly */
182 	for(i=0,j=jz,z=q[jz];j>0;i++,j--) {
183 	    fw    =  (double)((int32_t)(twon24* z));
184 	    iq[i] =  (int32_t)(z-two24*fw);
185 	    z     =  q[j-1]+fw;
186 	}
187 
188     /* compute n */
189 	z  = scalbn(z,q0);		/* actual value of z */
190 	z -= 8.0*floor(z*0.125);		/* trim off integer >= 8 */
191 	n  = (int32_t) z;
192 	z -= (double)n;
193 	ih = 0;
194 	if(q0>0) {	/* need iq[jz-1] to determine n */
195 	    i  = (iq[jz-1]>>(24-q0)); n += i;
196 	    iq[jz-1] -= i<<(24-q0);
197 	    ih = iq[jz-1]>>(23-q0);
198 	}
199 	else if(q0==0) ih = iq[jz-1]>>23;
200 	else if(z>=0.5) ih=2;
201 
202 	if(ih>0) {	/* q > 0.5 */
203 	    n += 1; carry = 0;
204 	    for(i=0;i<jz ;i++) {	/* compute 1-q */
205 		j = iq[i];
206 		if(carry==0) {
207 		    if(j!=0) {
208 			carry = 1; iq[i] = 0x1000000- j;
209 		    }
210 		} else  iq[i] = 0xffffff - j;
211 	    }
212 	    if(q0>0) {		/* rare case: chance is 1 in 12 */
213 	        switch(q0) {
214 	        case 1:
215 	    	   iq[jz-1] &= 0x7fffff; break;
216 	    	case 2:
217 	    	   iq[jz-1] &= 0x3fffff; break;
218 	        }
219 	    }
220 	    if(ih==2) {
221 		z = one - z;
222 		if(carry!=0) z -= scalbn(one,q0);
223 	    }
224 	}
225 
226     /* check if recomputation is needed */
227 	if(z==zero) {
228 	    j = 0;
229 	    for (i=jz-1;i>=jk;i--) j |= iq[i];
230 	    if(j==0) { /* need recomputation */
231 		for(k=1;iq[jk-k]==0;k++);   /* k = no. of terms needed */
232 
233 		for(i=jz+1;i<=jz+k;i++) {   /* add q[jz+1] to q[jz+k] */
234 		    f[jx+i] = (double) ipio2[jv+i];
235 		    for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j];
236 		    q[i] = fw;
237 		}
238 		jz += k;
239 		goto recompute;
240 	    }
241 	}
242 
243     /* chop off zero terms */
244 	if(z==0.0) {
245 	    jz -= 1; q0 -= 24;
246 	    while(iq[jz]==0) { jz--; q0-=24;}
247 	} else { /* break z into 24-bit if necessary */
248 	    z = scalbn(z,-q0);
249 	    if(z>=two24) {
250 		fw = (double)((int32_t)(twon24*z));
251 		iq[jz] = (int32_t)(z-two24*fw);
252 		jz += 1; q0 += 24;
253 		iq[jz] = (int32_t) fw;
254 	    } else iq[jz] = (int32_t) z ;
255 	}
256 
257     /* convert integer "bit" chunk to floating-point value */
258 	fw = scalbn(one,q0);
259 	for(i=jz;i>=0;i--) {
260 	    q[i] = fw*(double)iq[i]; fw*=twon24;
261 	}
262 
263     /* compute PIo2[0,...,jp]*q[jz,...,0] */
264 	for(i=jz;i>=0;i--) {
265 	    for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k];
266 	    fq[jz-i] = fw;
267 	}
268 
269     /* compress fq[] into y[] */
270 	switch(prec) {
271 	    case 0:
272 		fw = 0.0;
273 		for (i=jz;i>=0;i--) fw += fq[i];
274 		y[0] = (ih==0)? fw: -fw;
275 		break;
276 	    case 1:
277 	    case 2:
278 		fw = 0.0;
279 		for (i=jz;i>=0;i--) fw += fq[i];
280 		y[0] = (ih==0)? fw: -fw;
281 		fw = fq[0]-fw;
282 		for (i=1;i<=jz;i++) fw += fq[i];
283 		y[1] = (ih==0)? fw: -fw;
284 		break;
285 	    case 3:	/* painful */
286 		for (i=jz;i>0;i--) {
287 		    fw      = fq[i-1]+fq[i];
288 		    fq[i]  += fq[i-1]-fw;
289 		    fq[i-1] = fw;
290 		}
291 		for (i=jz;i>1;i--) {
292 		    fw      = fq[i-1]+fq[i];
293 		    fq[i]  += fq[i-1]-fw;
294 		    fq[i-1] = fw;
295 		}
296 		for (fw=0.0,i=jz;i>=2;i--) fw += fq[i];
297 		if(ih==0) {
298 		    y[0] =  fq[0]; y[1] =  fq[1]; y[2] =  fw;
299 		} else {
300 		    y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw;
301 		}
302 	}
303 	return n&7;
304 }
305