13a8617a8SJordan K. Hubbard /* @(#)k_rem_pio2.c 5.1 93/09/24 */ 23a8617a8SJordan K. Hubbard /* 33a8617a8SJordan K. Hubbard * ==================================================== 43a8617a8SJordan K. Hubbard * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. 53a8617a8SJordan K. Hubbard * 63a8617a8SJordan K. Hubbard * Developed at SunPro, a Sun Microsystems, Inc. business. 73a8617a8SJordan K. Hubbard * Permission to use, copy, modify, and distribute this 83a8617a8SJordan K. Hubbard * software is freely granted, provided that this notice 93a8617a8SJordan K. Hubbard * is preserved. 103a8617a8SJordan K. Hubbard * ==================================================== 113a8617a8SJordan K. Hubbard */ 123a8617a8SJordan K. Hubbard 133a8617a8SJordan K. Hubbard #ifndef lint 143a8617a8SJordan K. Hubbard static char rcsid[] = "$Id: k_rem_pio2.c,v 1.5 1994/08/18 23:06:11 jtc Exp $"; 153a8617a8SJordan K. Hubbard #endif 163a8617a8SJordan K. Hubbard 173a8617a8SJordan K. Hubbard /* 183a8617a8SJordan K. Hubbard * __kernel_rem_pio2(x,y,e0,nx,prec,ipio2) 193a8617a8SJordan K. Hubbard * double x[],y[]; int e0,nx,prec; int ipio2[]; 203a8617a8SJordan K. Hubbard * 213a8617a8SJordan K. Hubbard * __kernel_rem_pio2 return the last three digits of N with 223a8617a8SJordan K. Hubbard * y = x - N*pi/2 233a8617a8SJordan K. Hubbard * so that |y| < pi/2. 243a8617a8SJordan K. Hubbard * 253a8617a8SJordan K. Hubbard * The method is to compute the integer (mod 8) and fraction parts of 263a8617a8SJordan K. Hubbard * (2/pi)*x without doing the full multiplication. In general we 273a8617a8SJordan K. Hubbard * skip the part of the product that are known to be a huge integer ( 283a8617a8SJordan K. Hubbard * more accurately, = 0 mod 8 ). Thus the number of operations are 293a8617a8SJordan K. Hubbard * independent of the exponent of the input. 303a8617a8SJordan K. Hubbard * 313a8617a8SJordan K. Hubbard * (2/pi) is represented by an array of 24-bit integers in ipio2[]. 323a8617a8SJordan K. Hubbard * 333a8617a8SJordan K. Hubbard * Input parameters: 343a8617a8SJordan K. Hubbard * x[] The input value (must be positive) is broken into nx 353a8617a8SJordan K. Hubbard * pieces of 24-bit integers in double precision format. 363a8617a8SJordan K. Hubbard * x[i] will be the i-th 24 bit of x. The scaled exponent 373a8617a8SJordan K. Hubbard * of x[0] is given in input parameter e0 (i.e., x[0]*2^e0 383a8617a8SJordan K. Hubbard * match x's up to 24 bits. 393a8617a8SJordan K. Hubbard * 403a8617a8SJordan K. Hubbard * Example of breaking a double positive z into x[0]+x[1]+x[2]: 413a8617a8SJordan K. Hubbard * e0 = ilogb(z)-23 423a8617a8SJordan K. Hubbard * z = scalbn(z,-e0) 433a8617a8SJordan K. Hubbard * for i = 0,1,2 443a8617a8SJordan K. Hubbard * x[i] = floor(z) 453a8617a8SJordan K. Hubbard * z = (z-x[i])*2**24 463a8617a8SJordan K. Hubbard * 473a8617a8SJordan K. Hubbard * 483a8617a8SJordan K. Hubbard * y[] ouput result in an array of double precision numbers. 493a8617a8SJordan K. Hubbard * The dimension of y[] is: 503a8617a8SJordan K. Hubbard * 24-bit precision 1 513a8617a8SJordan K. Hubbard * 53-bit precision 2 523a8617a8SJordan K. Hubbard * 64-bit precision 2 533a8617a8SJordan K. Hubbard * 113-bit precision 3 543a8617a8SJordan K. Hubbard * The actual value is the sum of them. Thus for 113-bit 553a8617a8SJordan K. Hubbard * precison, one may have to do something like: 563a8617a8SJordan K. Hubbard * 573a8617a8SJordan K. Hubbard * long double t,w,r_head, r_tail; 583a8617a8SJordan K. Hubbard * t = (long double)y[2] + (long double)y[1]; 593a8617a8SJordan K. Hubbard * w = (long double)y[0]; 603a8617a8SJordan K. Hubbard * r_head = t+w; 613a8617a8SJordan K. Hubbard * r_tail = w - (r_head - t); 623a8617a8SJordan K. Hubbard * 633a8617a8SJordan K. Hubbard * e0 The exponent of x[0] 643a8617a8SJordan K. Hubbard * 653a8617a8SJordan K. Hubbard * nx dimension of x[] 663a8617a8SJordan K. Hubbard * 673a8617a8SJordan K. Hubbard * prec an integer indicating the precision: 683a8617a8SJordan K. Hubbard * 0 24 bits (single) 693a8617a8SJordan K. Hubbard * 1 53 bits (double) 703a8617a8SJordan K. Hubbard * 2 64 bits (extended) 713a8617a8SJordan K. Hubbard * 3 113 bits (quad) 723a8617a8SJordan K. Hubbard * 733a8617a8SJordan K. Hubbard * ipio2[] 743a8617a8SJordan K. Hubbard * integer array, contains the (24*i)-th to (24*i+23)-th 753a8617a8SJordan K. Hubbard * bit of 2/pi after binary point. The corresponding 763a8617a8SJordan K. Hubbard * floating value is 773a8617a8SJordan K. Hubbard * 783a8617a8SJordan K. Hubbard * ipio2[i] * 2^(-24(i+1)). 793a8617a8SJordan K. Hubbard * 803a8617a8SJordan K. Hubbard * External function: 813a8617a8SJordan K. Hubbard * double scalbn(), floor(); 823a8617a8SJordan K. Hubbard * 833a8617a8SJordan K. Hubbard * 843a8617a8SJordan K. Hubbard * Here is the description of some local variables: 853a8617a8SJordan K. Hubbard * 863a8617a8SJordan K. Hubbard * jk jk+1 is the initial number of terms of ipio2[] needed 873a8617a8SJordan K. Hubbard * in the computation. The recommended value is 2,3,4, 883a8617a8SJordan K. Hubbard * 6 for single, double, extended,and quad. 893a8617a8SJordan K. Hubbard * 903a8617a8SJordan K. Hubbard * jz local integer variable indicating the number of 913a8617a8SJordan K. Hubbard * terms of ipio2[] used. 923a8617a8SJordan K. Hubbard * 933a8617a8SJordan K. Hubbard * jx nx - 1 943a8617a8SJordan K. Hubbard * 953a8617a8SJordan K. Hubbard * jv index for pointing to the suitable ipio2[] for the 963a8617a8SJordan K. Hubbard * computation. In general, we want 973a8617a8SJordan K. Hubbard * ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8 983a8617a8SJordan K. Hubbard * is an integer. Thus 993a8617a8SJordan K. Hubbard * e0-3-24*jv >= 0 or (e0-3)/24 >= jv 1003a8617a8SJordan K. Hubbard * Hence jv = max(0,(e0-3)/24). 1013a8617a8SJordan K. Hubbard * 1023a8617a8SJordan K. Hubbard * jp jp+1 is the number of terms in PIo2[] needed, jp = jk. 1033a8617a8SJordan K. Hubbard * 1043a8617a8SJordan K. Hubbard * q[] double array with integral value, representing the 1053a8617a8SJordan K. Hubbard * 24-bits chunk of the product of x and 2/pi. 1063a8617a8SJordan K. Hubbard * 1073a8617a8SJordan K. Hubbard * q0 the corresponding exponent of q[0]. Note that the 1083a8617a8SJordan K. Hubbard * exponent for q[i] would be q0-24*i. 1093a8617a8SJordan K. Hubbard * 1103a8617a8SJordan K. Hubbard * PIo2[] double precision array, obtained by cutting pi/2 1113a8617a8SJordan K. Hubbard * into 24 bits chunks. 1123a8617a8SJordan K. Hubbard * 1133a8617a8SJordan K. Hubbard * f[] ipio2[] in floating point 1143a8617a8SJordan K. Hubbard * 1153a8617a8SJordan K. Hubbard * iq[] integer array by breaking up q[] in 24-bits chunk. 1163a8617a8SJordan K. Hubbard * 1173a8617a8SJordan K. Hubbard * fq[] final product of x*(2/pi) in fq[0],..,fq[jk] 1183a8617a8SJordan K. Hubbard * 1193a8617a8SJordan K. Hubbard * ih integer. If >0 it indicates q[] is >= 0.5, hence 1203a8617a8SJordan K. Hubbard * it also indicates the *sign* of the result. 1213a8617a8SJordan K. Hubbard * 1223a8617a8SJordan K. Hubbard */ 1233a8617a8SJordan K. Hubbard 1243a8617a8SJordan K. Hubbard 1253a8617a8SJordan K. Hubbard /* 1263a8617a8SJordan K. Hubbard * Constants: 1273a8617a8SJordan K. Hubbard * The hexadecimal values are the intended ones for the following 1283a8617a8SJordan K. Hubbard * constants. The decimal values may be used, provided that the 1293a8617a8SJordan K. Hubbard * compiler will convert from decimal to binary accurately enough 1303a8617a8SJordan K. Hubbard * to produce the hexadecimal values shown. 1313a8617a8SJordan K. Hubbard */ 1323a8617a8SJordan K. Hubbard 1333a8617a8SJordan K. Hubbard #include "math.h" 1343a8617a8SJordan K. Hubbard #include "math_private.h" 1353a8617a8SJordan K. Hubbard 1363a8617a8SJordan K. Hubbard #ifdef __STDC__ 1373a8617a8SJordan K. Hubbard static const int init_jk[] = {2,3,4,6}; /* initial value for jk */ 1383a8617a8SJordan K. Hubbard #else 1393a8617a8SJordan K. Hubbard static int init_jk[] = {2,3,4,6}; 1403a8617a8SJordan K. Hubbard #endif 1413a8617a8SJordan K. Hubbard 1423a8617a8SJordan K. Hubbard #ifdef __STDC__ 1433a8617a8SJordan K. Hubbard static const double PIo2[] = { 1443a8617a8SJordan K. Hubbard #else 1453a8617a8SJordan K. Hubbard static double PIo2[] = { 1463a8617a8SJordan K. Hubbard #endif 1473a8617a8SJordan K. Hubbard 1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */ 1483a8617a8SJordan K. Hubbard 7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */ 1493a8617a8SJordan K. Hubbard 5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */ 1503a8617a8SJordan K. Hubbard 3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */ 1513a8617a8SJordan K. Hubbard 1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */ 1523a8617a8SJordan K. Hubbard 1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */ 1533a8617a8SJordan K. Hubbard 2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */ 1543a8617a8SJordan K. Hubbard 2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */ 1553a8617a8SJordan K. Hubbard }; 1563a8617a8SJordan K. Hubbard 1573a8617a8SJordan K. Hubbard #ifdef __STDC__ 1583a8617a8SJordan K. Hubbard static const double 1593a8617a8SJordan K. Hubbard #else 1603a8617a8SJordan K. Hubbard static double 1613a8617a8SJordan K. Hubbard #endif 1623a8617a8SJordan K. Hubbard zero = 0.0, 1633a8617a8SJordan K. Hubbard one = 1.0, 1643a8617a8SJordan K. Hubbard two24 = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */ 1653a8617a8SJordan K. Hubbard twon24 = 5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */ 1663a8617a8SJordan K. Hubbard 1673a8617a8SJordan K. Hubbard #ifdef __STDC__ 1683a8617a8SJordan K. Hubbard int __kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec, const int32_t *ipio2) 1693a8617a8SJordan K. Hubbard #else 1703a8617a8SJordan K. Hubbard int __kernel_rem_pio2(x,y,e0,nx,prec,ipio2) 1713a8617a8SJordan K. Hubbard double x[], y[]; int e0,nx,prec; int32_t ipio2[]; 1723a8617a8SJordan K. Hubbard #endif 1733a8617a8SJordan K. Hubbard { 1743a8617a8SJordan K. Hubbard int32_t jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih; 1753a8617a8SJordan K. Hubbard double z,fw,f[20],fq[20],q[20]; 1763a8617a8SJordan K. Hubbard 1773a8617a8SJordan K. Hubbard /* initialize jk*/ 1783a8617a8SJordan K. Hubbard jk = init_jk[prec]; 1793a8617a8SJordan K. Hubbard jp = jk; 1803a8617a8SJordan K. Hubbard 1813a8617a8SJordan K. Hubbard /* determine jx,jv,q0, note that 3>q0 */ 1823a8617a8SJordan K. Hubbard jx = nx-1; 1833a8617a8SJordan K. Hubbard jv = (e0-3)/24; if(jv<0) jv=0; 1843a8617a8SJordan K. Hubbard q0 = e0-24*(jv+1); 1853a8617a8SJordan K. Hubbard 1863a8617a8SJordan K. Hubbard /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */ 1873a8617a8SJordan K. Hubbard j = jv-jx; m = jx+jk; 1883a8617a8SJordan K. Hubbard for(i=0;i<=m;i++,j++) f[i] = (j<0)? zero : (double) ipio2[j]; 1893a8617a8SJordan K. Hubbard 1903a8617a8SJordan K. Hubbard /* compute q[0],q[1],...q[jk] */ 1913a8617a8SJordan K. Hubbard for (i=0;i<=jk;i++) { 1923a8617a8SJordan K. Hubbard for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; q[i] = fw; 1933a8617a8SJordan K. Hubbard } 1943a8617a8SJordan K. Hubbard 1953a8617a8SJordan K. Hubbard jz = jk; 1963a8617a8SJordan K. Hubbard recompute: 1973a8617a8SJordan K. Hubbard /* distill q[] into iq[] reversingly */ 1983a8617a8SJordan K. Hubbard for(i=0,j=jz,z=q[jz];j>0;i++,j--) { 1993a8617a8SJordan K. Hubbard fw = (double)((int32_t)(twon24* z)); 2003a8617a8SJordan K. Hubbard iq[i] = (int32_t)(z-two24*fw); 2013a8617a8SJordan K. Hubbard z = q[j-1]+fw; 2023a8617a8SJordan K. Hubbard } 2033a8617a8SJordan K. Hubbard 2043a8617a8SJordan K. Hubbard /* compute n */ 2053a8617a8SJordan K. Hubbard z = scalbn(z,q0); /* actual value of z */ 2063a8617a8SJordan K. Hubbard z -= 8.0*floor(z*0.125); /* trim off integer >= 8 */ 2073a8617a8SJordan K. Hubbard n = (int32_t) z; 2083a8617a8SJordan K. Hubbard z -= (double)n; 2093a8617a8SJordan K. Hubbard ih = 0; 2103a8617a8SJordan K. Hubbard if(q0>0) { /* need iq[jz-1] to determine n */ 2113a8617a8SJordan K. Hubbard i = (iq[jz-1]>>(24-q0)); n += i; 2123a8617a8SJordan K. Hubbard iq[jz-1] -= i<<(24-q0); 2133a8617a8SJordan K. Hubbard ih = iq[jz-1]>>(23-q0); 2143a8617a8SJordan K. Hubbard } 2153a8617a8SJordan K. Hubbard else if(q0==0) ih = iq[jz-1]>>23; 2163a8617a8SJordan K. Hubbard else if(z>=0.5) ih=2; 2173a8617a8SJordan K. Hubbard 2183a8617a8SJordan K. Hubbard if(ih>0) { /* q > 0.5 */ 2193a8617a8SJordan K. Hubbard n += 1; carry = 0; 2203a8617a8SJordan K. Hubbard for(i=0;i<jz ;i++) { /* compute 1-q */ 2213a8617a8SJordan K. Hubbard j = iq[i]; 2223a8617a8SJordan K. Hubbard if(carry==0) { 2233a8617a8SJordan K. Hubbard if(j!=0) { 2243a8617a8SJordan K. Hubbard carry = 1; iq[i] = 0x1000000- j; 2253a8617a8SJordan K. Hubbard } 2263a8617a8SJordan K. Hubbard } else iq[i] = 0xffffff - j; 2273a8617a8SJordan K. Hubbard } 2283a8617a8SJordan K. Hubbard if(q0>0) { /* rare case: chance is 1 in 12 */ 2293a8617a8SJordan K. Hubbard switch(q0) { 2303a8617a8SJordan K. Hubbard case 1: 2313a8617a8SJordan K. Hubbard iq[jz-1] &= 0x7fffff; break; 2323a8617a8SJordan K. Hubbard case 2: 2333a8617a8SJordan K. Hubbard iq[jz-1] &= 0x3fffff; break; 2343a8617a8SJordan K. Hubbard } 2353a8617a8SJordan K. Hubbard } 2363a8617a8SJordan K. Hubbard if(ih==2) { 2373a8617a8SJordan K. Hubbard z = one - z; 2383a8617a8SJordan K. Hubbard if(carry!=0) z -= scalbn(one,q0); 2393a8617a8SJordan K. Hubbard } 2403a8617a8SJordan K. Hubbard } 2413a8617a8SJordan K. Hubbard 2423a8617a8SJordan K. Hubbard /* check if recomputation is needed */ 2433a8617a8SJordan K. Hubbard if(z==zero) { 2443a8617a8SJordan K. Hubbard j = 0; 2453a8617a8SJordan K. Hubbard for (i=jz-1;i>=jk;i--) j |= iq[i]; 2463a8617a8SJordan K. Hubbard if(j==0) { /* need recomputation */ 2473a8617a8SJordan K. Hubbard for(k=1;iq[jk-k]==0;k++); /* k = no. of terms needed */ 2483a8617a8SJordan K. Hubbard 2493a8617a8SJordan K. Hubbard for(i=jz+1;i<=jz+k;i++) { /* add q[jz+1] to q[jz+k] */ 2503a8617a8SJordan K. Hubbard f[jx+i] = (double) ipio2[jv+i]; 2513a8617a8SJordan K. Hubbard for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; 2523a8617a8SJordan K. Hubbard q[i] = fw; 2533a8617a8SJordan K. Hubbard } 2543a8617a8SJordan K. Hubbard jz += k; 2553a8617a8SJordan K. Hubbard goto recompute; 2563a8617a8SJordan K. Hubbard } 2573a8617a8SJordan K. Hubbard } 2583a8617a8SJordan K. Hubbard 2593a8617a8SJordan K. Hubbard /* chop off zero terms */ 2603a8617a8SJordan K. Hubbard if(z==0.0) { 2613a8617a8SJordan K. Hubbard jz -= 1; q0 -= 24; 2623a8617a8SJordan K. Hubbard while(iq[jz]==0) { jz--; q0-=24;} 2633a8617a8SJordan K. Hubbard } else { /* break z into 24-bit if necessary */ 2643a8617a8SJordan K. Hubbard z = scalbn(z,-q0); 2653a8617a8SJordan K. Hubbard if(z>=two24) { 2663a8617a8SJordan K. Hubbard fw = (double)((int32_t)(twon24*z)); 2673a8617a8SJordan K. Hubbard iq[jz] = (int32_t)(z-two24*fw); 2683a8617a8SJordan K. Hubbard jz += 1; q0 += 24; 2693a8617a8SJordan K. Hubbard iq[jz] = (int32_t) fw; 2703a8617a8SJordan K. Hubbard } else iq[jz] = (int32_t) z ; 2713a8617a8SJordan K. Hubbard } 2723a8617a8SJordan K. Hubbard 2733a8617a8SJordan K. Hubbard /* convert integer "bit" chunk to floating-point value */ 2743a8617a8SJordan K. Hubbard fw = scalbn(one,q0); 2753a8617a8SJordan K. Hubbard for(i=jz;i>=0;i--) { 2763a8617a8SJordan K. Hubbard q[i] = fw*(double)iq[i]; fw*=twon24; 2773a8617a8SJordan K. Hubbard } 2783a8617a8SJordan K. Hubbard 2793a8617a8SJordan K. Hubbard /* compute PIo2[0,...,jp]*q[jz,...,0] */ 2803a8617a8SJordan K. Hubbard for(i=jz;i>=0;i--) { 2813a8617a8SJordan K. Hubbard for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k]; 2823a8617a8SJordan K. Hubbard fq[jz-i] = fw; 2833a8617a8SJordan K. Hubbard } 2843a8617a8SJordan K. Hubbard 2853a8617a8SJordan K. Hubbard /* compress fq[] into y[] */ 2863a8617a8SJordan K. Hubbard switch(prec) { 2873a8617a8SJordan K. Hubbard case 0: 2883a8617a8SJordan K. Hubbard fw = 0.0; 2893a8617a8SJordan K. Hubbard for (i=jz;i>=0;i--) fw += fq[i]; 2903a8617a8SJordan K. Hubbard y[0] = (ih==0)? fw: -fw; 2913a8617a8SJordan K. Hubbard break; 2923a8617a8SJordan K. Hubbard case 1: 2933a8617a8SJordan K. Hubbard case 2: 2943a8617a8SJordan K. Hubbard fw = 0.0; 2953a8617a8SJordan K. Hubbard for (i=jz;i>=0;i--) fw += fq[i]; 2963a8617a8SJordan K. Hubbard y[0] = (ih==0)? fw: -fw; 2973a8617a8SJordan K. Hubbard fw = fq[0]-fw; 2983a8617a8SJordan K. Hubbard for (i=1;i<=jz;i++) fw += fq[i]; 2993a8617a8SJordan K. Hubbard y[1] = (ih==0)? fw: -fw; 3003a8617a8SJordan K. Hubbard break; 3013a8617a8SJordan K. Hubbard case 3: /* painful */ 3023a8617a8SJordan K. Hubbard for (i=jz;i>0;i--) { 3033a8617a8SJordan K. Hubbard fw = fq[i-1]+fq[i]; 3043a8617a8SJordan K. Hubbard fq[i] += fq[i-1]-fw; 3053a8617a8SJordan K. Hubbard fq[i-1] = fw; 3063a8617a8SJordan K. Hubbard } 3073a8617a8SJordan K. Hubbard for (i=jz;i>1;i--) { 3083a8617a8SJordan K. Hubbard fw = fq[i-1]+fq[i]; 3093a8617a8SJordan K. Hubbard fq[i] += fq[i-1]-fw; 3103a8617a8SJordan K. Hubbard fq[i-1] = fw; 3113a8617a8SJordan K. Hubbard } 3123a8617a8SJordan K. Hubbard for (fw=0.0,i=jz;i>=2;i--) fw += fq[i]; 3133a8617a8SJordan K. Hubbard if(ih==0) { 3143a8617a8SJordan K. Hubbard y[0] = fq[0]; y[1] = fq[1]; y[2] = fw; 3153a8617a8SJordan K. Hubbard } else { 3163a8617a8SJordan K. Hubbard y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw; 3173a8617a8SJordan K. Hubbard } 3183a8617a8SJordan K. Hubbard } 3193a8617a8SJordan K. Hubbard return n&7; 3203a8617a8SJordan K. Hubbard } 321