xref: /freebsd/lib/msun/src/k_log.h (revision 884a2a699669ec61e2366e3e358342dbc94be24a)
1 
2 /* @(#)e_log.c 1.3 95/01/18 */
3 /*
4  * ====================================================
5  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6  *
7  * Developed at SunSoft, a Sun Microsystems, Inc. business.
8  * Permission to use, copy, modify, and distribute this
9  * software is freely granted, provided that this notice
10  * is preserved.
11  * ====================================================
12  */
13 
14 #include <sys/cdefs.h>
15 __FBSDID("$FreeBSD$");
16 
17 /* __kernel_log(x)
18  * Return log(x) - (x-1) for x in ~[sqrt(2)/2, sqrt(2)].
19  *
20  * The following describes the overall strategy for computing
21  * logarithms in base e.  The argument reduction and adding the final
22  * term of the polynomial are done by the caller for increased accuracy
23  * when different bases are used.
24  *
25  * Method :
26  *   1. Argument Reduction: find k and f such that
27  *			x = 2^k * (1+f),
28  *	   where  sqrt(2)/2 < 1+f < sqrt(2) .
29  *
30  *   2. Approximation of log(1+f).
31  *	Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
32  *		 = 2s + 2/3 s**3 + 2/5 s**5 + .....,
33  *	     	 = 2s + s*R
34  *      We use a special Reme algorithm on [0,0.1716] to generate
35  * 	a polynomial of degree 14 to approximate R The maximum error
36  *	of this polynomial approximation is bounded by 2**-58.45. In
37  *	other words,
38  *		        2      4      6      8      10      12      14
39  *	    R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s  +Lg6*s  +Lg7*s
40  *  	(the values of Lg1 to Lg7 are listed in the program)
41  *	and
42  *	    |      2          14          |     -58.45
43  *	    | Lg1*s +...+Lg7*s    -  R(z) | <= 2
44  *	    |                             |
45  *	Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
46  *	In order to guarantee error in log below 1ulp, we compute log
47  *	by
48  *		log(1+f) = f - s*(f - R)	(if f is not too large)
49  *		log(1+f) = f - (hfsq - s*(hfsq+R)).	(better accuracy)
50  *
51  *	3. Finally,  log(x) = k*ln2 + log(1+f).
52  *			    = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
53  *	   Here ln2 is split into two floating point number:
54  *			ln2_hi + ln2_lo,
55  *	   where n*ln2_hi is always exact for |n| < 2000.
56  *
57  * Special cases:
58  *	log(x) is NaN with signal if x < 0 (including -INF) ;
59  *	log(+INF) is +INF; log(0) is -INF with signal;
60  *	log(NaN) is that NaN with no signal.
61  *
62  * Accuracy:
63  *	according to an error analysis, the error is always less than
64  *	1 ulp (unit in the last place).
65  *
66  * Constants:
67  * The hexadecimal values are the intended ones for the following
68  * constants. The decimal values may be used, provided that the
69  * compiler will convert from decimal to binary accurately enough
70  * to produce the hexadecimal values shown.
71  */
72 
73 static const double
74 Lg1 = 6.666666666666735130e-01,  /* 3FE55555 55555593 */
75 Lg2 = 3.999999999940941908e-01,  /* 3FD99999 9997FA04 */
76 Lg3 = 2.857142874366239149e-01,  /* 3FD24924 94229359 */
77 Lg4 = 2.222219843214978396e-01,  /* 3FCC71C5 1D8E78AF */
78 Lg5 = 1.818357216161805012e-01,  /* 3FC74664 96CB03DE */
79 Lg6 = 1.531383769920937332e-01,  /* 3FC39A09 D078C69F */
80 Lg7 = 1.479819860511658591e-01;  /* 3FC2F112 DF3E5244 */
81 
82 /*
83  * We always inline __kernel_log(), since doing so produces a
84  * substantial performance improvement (~40% on amd64).
85  */
86 static inline double
87 __kernel_log(double x)
88 {
89 	double hfsq,f,s,z,R,w,t1,t2;
90 	int32_t hx,i,j;
91 	u_int32_t lx;
92 
93 	EXTRACT_WORDS(hx,lx,x);
94 
95 	f = x-1.0;
96 	if((0x000fffff&(2+hx))<3) {	/* -2**-20 <= f < 2**-20 */
97 	    if(f==0.0) return 0.0;
98 	    return f*f*(0.33333333333333333*f-0.5);
99 	}
100  	s = f/(2.0+f);
101 	z = s*s;
102 	hx &= 0x000fffff;
103 	i = hx-0x6147a;
104 	w = z*z;
105 	j = 0x6b851-hx;
106 	t1= w*(Lg2+w*(Lg4+w*Lg6));
107 	t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
108 	i |= j;
109 	R = t2+t1;
110 	if (i>0) {
111 	    hfsq=0.5*f*f;
112 	    return s*(hfsq+R) - hfsq;
113 	} else {
114 	    return s*(R-f);
115 	}
116 }
117