1*e7780530SDavid Schultz 2*e7780530SDavid Schultz /* @(#)e_log.c 1.3 95/01/18 */ 3*e7780530SDavid Schultz /* 4*e7780530SDavid Schultz * ==================================================== 5*e7780530SDavid Schultz * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. 6*e7780530SDavid Schultz * 7*e7780530SDavid Schultz * Developed at SunSoft, a Sun Microsystems, Inc. business. 8*e7780530SDavid Schultz * Permission to use, copy, modify, and distribute this 9*e7780530SDavid Schultz * software is freely granted, provided that this notice 10*e7780530SDavid Schultz * is preserved. 11*e7780530SDavid Schultz * ==================================================== 12*e7780530SDavid Schultz */ 13*e7780530SDavid Schultz 14*e7780530SDavid Schultz #include <sys/cdefs.h> 15*e7780530SDavid Schultz __FBSDID("$FreeBSD$"); 16*e7780530SDavid Schultz 17*e7780530SDavid Schultz /* __kernel_log(x) 18*e7780530SDavid Schultz * Return log(x) - (x-1) for x in ~[sqrt(2)/2, sqrt(2)]. 19*e7780530SDavid Schultz * 20*e7780530SDavid Schultz * The following describes the overall strategy for computing 21*e7780530SDavid Schultz * logarithms in base e. The argument reduction and adding the final 22*e7780530SDavid Schultz * term of the polynomial are done by the caller for increased accuracy 23*e7780530SDavid Schultz * when different bases are used. 24*e7780530SDavid Schultz * 25*e7780530SDavid Schultz * Method : 26*e7780530SDavid Schultz * 1. Argument Reduction: find k and f such that 27*e7780530SDavid Schultz * x = 2^k * (1+f), 28*e7780530SDavid Schultz * where sqrt(2)/2 < 1+f < sqrt(2) . 29*e7780530SDavid Schultz * 30*e7780530SDavid Schultz * 2. Approximation of log(1+f). 31*e7780530SDavid Schultz * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) 32*e7780530SDavid Schultz * = 2s + 2/3 s**3 + 2/5 s**5 + ....., 33*e7780530SDavid Schultz * = 2s + s*R 34*e7780530SDavid Schultz * We use a special Reme algorithm on [0,0.1716] to generate 35*e7780530SDavid Schultz * a polynomial of degree 14 to approximate R The maximum error 36*e7780530SDavid Schultz * of this polynomial approximation is bounded by 2**-58.45. In 37*e7780530SDavid Schultz * other words, 38*e7780530SDavid Schultz * 2 4 6 8 10 12 14 39*e7780530SDavid Schultz * R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s 40*e7780530SDavid Schultz * (the values of Lg1 to Lg7 are listed in the program) 41*e7780530SDavid Schultz * and 42*e7780530SDavid Schultz * | 2 14 | -58.45 43*e7780530SDavid Schultz * | Lg1*s +...+Lg7*s - R(z) | <= 2 44*e7780530SDavid Schultz * | | 45*e7780530SDavid Schultz * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2. 46*e7780530SDavid Schultz * In order to guarantee error in log below 1ulp, we compute log 47*e7780530SDavid Schultz * by 48*e7780530SDavid Schultz * log(1+f) = f - s*(f - R) (if f is not too large) 49*e7780530SDavid Schultz * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy) 50*e7780530SDavid Schultz * 51*e7780530SDavid Schultz * 3. Finally, log(x) = k*ln2 + log(1+f). 52*e7780530SDavid Schultz * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo))) 53*e7780530SDavid Schultz * Here ln2 is split into two floating point number: 54*e7780530SDavid Schultz * ln2_hi + ln2_lo, 55*e7780530SDavid Schultz * where n*ln2_hi is always exact for |n| < 2000. 56*e7780530SDavid Schultz * 57*e7780530SDavid Schultz * Special cases: 58*e7780530SDavid Schultz * log(x) is NaN with signal if x < 0 (including -INF) ; 59*e7780530SDavid Schultz * log(+INF) is +INF; log(0) is -INF with signal; 60*e7780530SDavid Schultz * log(NaN) is that NaN with no signal. 61*e7780530SDavid Schultz * 62*e7780530SDavid Schultz * Accuracy: 63*e7780530SDavid Schultz * according to an error analysis, the error is always less than 64*e7780530SDavid Schultz * 1 ulp (unit in the last place). 65*e7780530SDavid Schultz * 66*e7780530SDavid Schultz * Constants: 67*e7780530SDavid Schultz * The hexadecimal values are the intended ones for the following 68*e7780530SDavid Schultz * constants. The decimal values may be used, provided that the 69*e7780530SDavid Schultz * compiler will convert from decimal to binary accurately enough 70*e7780530SDavid Schultz * to produce the hexadecimal values shown. 71*e7780530SDavid Schultz */ 72*e7780530SDavid Schultz 73*e7780530SDavid Schultz static const double 74*e7780530SDavid Schultz Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */ 75*e7780530SDavid Schultz Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */ 76*e7780530SDavid Schultz Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */ 77*e7780530SDavid Schultz Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */ 78*e7780530SDavid Schultz Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */ 79*e7780530SDavid Schultz Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */ 80*e7780530SDavid Schultz Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */ 81*e7780530SDavid Schultz 82*e7780530SDavid Schultz /* 83*e7780530SDavid Schultz * We always inline __kernel_log(), since doing so produces a 84*e7780530SDavid Schultz * substantial performance improvement (~40% on amd64). 85*e7780530SDavid Schultz */ 86*e7780530SDavid Schultz static inline double 87*e7780530SDavid Schultz __kernel_log(double x) 88*e7780530SDavid Schultz { 89*e7780530SDavid Schultz double hfsq,f,s,z,R,w,t1,t2; 90*e7780530SDavid Schultz int32_t hx,i,j; 91*e7780530SDavid Schultz u_int32_t lx; 92*e7780530SDavid Schultz 93*e7780530SDavid Schultz EXTRACT_WORDS(hx,lx,x); 94*e7780530SDavid Schultz 95*e7780530SDavid Schultz f = x-1.0; 96*e7780530SDavid Schultz if((0x000fffff&(2+hx))<3) { /* -2**-20 <= f < 2**-20 */ 97*e7780530SDavid Schultz if(f==0.0) return 0.0; 98*e7780530SDavid Schultz return f*f*(0.33333333333333333*f-0.5); 99*e7780530SDavid Schultz } 100*e7780530SDavid Schultz s = f/(2.0+f); 101*e7780530SDavid Schultz z = s*s; 102*e7780530SDavid Schultz hx &= 0x000fffff; 103*e7780530SDavid Schultz i = hx-0x6147a; 104*e7780530SDavid Schultz w = z*z; 105*e7780530SDavid Schultz j = 0x6b851-hx; 106*e7780530SDavid Schultz t1= w*(Lg2+w*(Lg4+w*Lg6)); 107*e7780530SDavid Schultz t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7))); 108*e7780530SDavid Schultz i |= j; 109*e7780530SDavid Schultz R = t2+t1; 110*e7780530SDavid Schultz if (i>0) { 111*e7780530SDavid Schultz hfsq=0.5*f*f; 112*e7780530SDavid Schultz return s*(hfsq+R) - hfsq; 113*e7780530SDavid Schultz } else { 114*e7780530SDavid Schultz return s*(R-f); 115*e7780530SDavid Schultz } 116*e7780530SDavid Schultz } 117