xref: /freebsd/lib/msun/src/k_log.h (revision e7780530faaef75b90cebeec8b3f40df1b81b3d1)
1*e7780530SDavid Schultz 
2*e7780530SDavid Schultz /* @(#)e_log.c 1.3 95/01/18 */
3*e7780530SDavid Schultz /*
4*e7780530SDavid Schultz  * ====================================================
5*e7780530SDavid Schultz  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6*e7780530SDavid Schultz  *
7*e7780530SDavid Schultz  * Developed at SunSoft, a Sun Microsystems, Inc. business.
8*e7780530SDavid Schultz  * Permission to use, copy, modify, and distribute this
9*e7780530SDavid Schultz  * software is freely granted, provided that this notice
10*e7780530SDavid Schultz  * is preserved.
11*e7780530SDavid Schultz  * ====================================================
12*e7780530SDavid Schultz  */
13*e7780530SDavid Schultz 
14*e7780530SDavid Schultz #include <sys/cdefs.h>
15*e7780530SDavid Schultz __FBSDID("$FreeBSD$");
16*e7780530SDavid Schultz 
17*e7780530SDavid Schultz /* __kernel_log(x)
18*e7780530SDavid Schultz  * Return log(x) - (x-1) for x in ~[sqrt(2)/2, sqrt(2)].
19*e7780530SDavid Schultz  *
20*e7780530SDavid Schultz  * The following describes the overall strategy for computing
21*e7780530SDavid Schultz  * logarithms in base e.  The argument reduction and adding the final
22*e7780530SDavid Schultz  * term of the polynomial are done by the caller for increased accuracy
23*e7780530SDavid Schultz  * when different bases are used.
24*e7780530SDavid Schultz  *
25*e7780530SDavid Schultz  * Method :
26*e7780530SDavid Schultz  *   1. Argument Reduction: find k and f such that
27*e7780530SDavid Schultz  *			x = 2^k * (1+f),
28*e7780530SDavid Schultz  *	   where  sqrt(2)/2 < 1+f < sqrt(2) .
29*e7780530SDavid Schultz  *
30*e7780530SDavid Schultz  *   2. Approximation of log(1+f).
31*e7780530SDavid Schultz  *	Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
32*e7780530SDavid Schultz  *		 = 2s + 2/3 s**3 + 2/5 s**5 + .....,
33*e7780530SDavid Schultz  *	     	 = 2s + s*R
34*e7780530SDavid Schultz  *      We use a special Reme algorithm on [0,0.1716] to generate
35*e7780530SDavid Schultz  * 	a polynomial of degree 14 to approximate R The maximum error
36*e7780530SDavid Schultz  *	of this polynomial approximation is bounded by 2**-58.45. In
37*e7780530SDavid Schultz  *	other words,
38*e7780530SDavid Schultz  *		        2      4      6      8      10      12      14
39*e7780530SDavid Schultz  *	    R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s  +Lg6*s  +Lg7*s
40*e7780530SDavid Schultz  *  	(the values of Lg1 to Lg7 are listed in the program)
41*e7780530SDavid Schultz  *	and
42*e7780530SDavid Schultz  *	    |      2          14          |     -58.45
43*e7780530SDavid Schultz  *	    | Lg1*s +...+Lg7*s    -  R(z) | <= 2
44*e7780530SDavid Schultz  *	    |                             |
45*e7780530SDavid Schultz  *	Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
46*e7780530SDavid Schultz  *	In order to guarantee error in log below 1ulp, we compute log
47*e7780530SDavid Schultz  *	by
48*e7780530SDavid Schultz  *		log(1+f) = f - s*(f - R)	(if f is not too large)
49*e7780530SDavid Schultz  *		log(1+f) = f - (hfsq - s*(hfsq+R)).	(better accuracy)
50*e7780530SDavid Schultz  *
51*e7780530SDavid Schultz  *	3. Finally,  log(x) = k*ln2 + log(1+f).
52*e7780530SDavid Schultz  *			    = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
53*e7780530SDavid Schultz  *	   Here ln2 is split into two floating point number:
54*e7780530SDavid Schultz  *			ln2_hi + ln2_lo,
55*e7780530SDavid Schultz  *	   where n*ln2_hi is always exact for |n| < 2000.
56*e7780530SDavid Schultz  *
57*e7780530SDavid Schultz  * Special cases:
58*e7780530SDavid Schultz  *	log(x) is NaN with signal if x < 0 (including -INF) ;
59*e7780530SDavid Schultz  *	log(+INF) is +INF; log(0) is -INF with signal;
60*e7780530SDavid Schultz  *	log(NaN) is that NaN with no signal.
61*e7780530SDavid Schultz  *
62*e7780530SDavid Schultz  * Accuracy:
63*e7780530SDavid Schultz  *	according to an error analysis, the error is always less than
64*e7780530SDavid Schultz  *	1 ulp (unit in the last place).
65*e7780530SDavid Schultz  *
66*e7780530SDavid Schultz  * Constants:
67*e7780530SDavid Schultz  * The hexadecimal values are the intended ones for the following
68*e7780530SDavid Schultz  * constants. The decimal values may be used, provided that the
69*e7780530SDavid Schultz  * compiler will convert from decimal to binary accurately enough
70*e7780530SDavid Schultz  * to produce the hexadecimal values shown.
71*e7780530SDavid Schultz  */
72*e7780530SDavid Schultz 
73*e7780530SDavid Schultz static const double
74*e7780530SDavid Schultz Lg1 = 6.666666666666735130e-01,  /* 3FE55555 55555593 */
75*e7780530SDavid Schultz Lg2 = 3.999999999940941908e-01,  /* 3FD99999 9997FA04 */
76*e7780530SDavid Schultz Lg3 = 2.857142874366239149e-01,  /* 3FD24924 94229359 */
77*e7780530SDavid Schultz Lg4 = 2.222219843214978396e-01,  /* 3FCC71C5 1D8E78AF */
78*e7780530SDavid Schultz Lg5 = 1.818357216161805012e-01,  /* 3FC74664 96CB03DE */
79*e7780530SDavid Schultz Lg6 = 1.531383769920937332e-01,  /* 3FC39A09 D078C69F */
80*e7780530SDavid Schultz Lg7 = 1.479819860511658591e-01;  /* 3FC2F112 DF3E5244 */
81*e7780530SDavid Schultz 
82*e7780530SDavid Schultz /*
83*e7780530SDavid Schultz  * We always inline __kernel_log(), since doing so produces a
84*e7780530SDavid Schultz  * substantial performance improvement (~40% on amd64).
85*e7780530SDavid Schultz  */
86*e7780530SDavid Schultz static inline double
87*e7780530SDavid Schultz __kernel_log(double x)
88*e7780530SDavid Schultz {
89*e7780530SDavid Schultz 	double hfsq,f,s,z,R,w,t1,t2;
90*e7780530SDavid Schultz 	int32_t hx,i,j;
91*e7780530SDavid Schultz 	u_int32_t lx;
92*e7780530SDavid Schultz 
93*e7780530SDavid Schultz 	EXTRACT_WORDS(hx,lx,x);
94*e7780530SDavid Schultz 
95*e7780530SDavid Schultz 	f = x-1.0;
96*e7780530SDavid Schultz 	if((0x000fffff&(2+hx))<3) {	/* -2**-20 <= f < 2**-20 */
97*e7780530SDavid Schultz 	    if(f==0.0) return 0.0;
98*e7780530SDavid Schultz 	    return f*f*(0.33333333333333333*f-0.5);
99*e7780530SDavid Schultz 	}
100*e7780530SDavid Schultz  	s = f/(2.0+f);
101*e7780530SDavid Schultz 	z = s*s;
102*e7780530SDavid Schultz 	hx &= 0x000fffff;
103*e7780530SDavid Schultz 	i = hx-0x6147a;
104*e7780530SDavid Schultz 	w = z*z;
105*e7780530SDavid Schultz 	j = 0x6b851-hx;
106*e7780530SDavid Schultz 	t1= w*(Lg2+w*(Lg4+w*Lg6));
107*e7780530SDavid Schultz 	t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
108*e7780530SDavid Schultz 	i |= j;
109*e7780530SDavid Schultz 	R = t2+t1;
110*e7780530SDavid Schultz 	if (i>0) {
111*e7780530SDavid Schultz 	    hfsq=0.5*f*f;
112*e7780530SDavid Schultz 	    return s*(hfsq+R) - hfsq;
113*e7780530SDavid Schultz 	} else {
114*e7780530SDavid Schultz 	    return s*(R-f);
115*e7780530SDavid Schultz 	}
116*e7780530SDavid Schultz }
117