xref: /freebsd/lib/msun/src/k_log.h (revision 0dd5a5603e7a33d976f8e6015620bbc79839c609)
1e7780530SDavid Schultz 
2e7780530SDavid Schultz /*
3e7780530SDavid Schultz  * ====================================================
4e7780530SDavid Schultz  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5e7780530SDavid Schultz  *
6e7780530SDavid Schultz  * Developed at SunSoft, a Sun Microsystems, Inc. business.
7e7780530SDavid Schultz  * Permission to use, copy, modify, and distribute this
8e7780530SDavid Schultz  * software is freely granted, provided that this notice
9e7780530SDavid Schultz  * is preserved.
10e7780530SDavid Schultz  * ====================================================
11e7780530SDavid Schultz  */
12e7780530SDavid Schultz 
13*b052ec90SDavid Schultz /*
14*b052ec90SDavid Schultz  * k_log1p(f):
15*b052ec90SDavid Schultz  * Return log(1+f) - f for 1+f in ~[sqrt(2)/2, sqrt(2)].
16e7780530SDavid Schultz  *
17e7780530SDavid Schultz  * The following describes the overall strategy for computing
18e7780530SDavid Schultz  * logarithms in base e.  The argument reduction and adding the final
19e7780530SDavid Schultz  * term of the polynomial are done by the caller for increased accuracy
20e7780530SDavid Schultz  * when different bases are used.
21e7780530SDavid Schultz  *
22e7780530SDavid Schultz  * Method :
23e7780530SDavid Schultz  *   1. Argument Reduction: find k and f such that
24e7780530SDavid Schultz  *			x = 2^k * (1+f),
25e7780530SDavid Schultz  *	   where  sqrt(2)/2 < 1+f < sqrt(2) .
26e7780530SDavid Schultz  *
27e7780530SDavid Schultz  *   2. Approximation of log(1+f).
28e7780530SDavid Schultz  *	Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
29e7780530SDavid Schultz  *		 = 2s + 2/3 s**3 + 2/5 s**5 + .....,
30e7780530SDavid Schultz  *	     	 = 2s + s*R
31e7780530SDavid Schultz  *      We use a special Reme algorithm on [0,0.1716] to generate
32e7780530SDavid Schultz  * 	a polynomial of degree 14 to approximate R The maximum error
33e7780530SDavid Schultz  *	of this polynomial approximation is bounded by 2**-58.45. In
34e7780530SDavid Schultz  *	other words,
35e7780530SDavid Schultz  *		        2      4      6      8      10      12      14
36e7780530SDavid Schultz  *	    R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s  +Lg6*s  +Lg7*s
37e7780530SDavid Schultz  *  	(the values of Lg1 to Lg7 are listed in the program)
38e7780530SDavid Schultz  *	and
39e7780530SDavid Schultz  *	    |      2          14          |     -58.45
40e7780530SDavid Schultz  *	    | Lg1*s +...+Lg7*s    -  R(z) | <= 2
41e7780530SDavid Schultz  *	    |                             |
42e7780530SDavid Schultz  *	Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
43e7780530SDavid Schultz  *	In order to guarantee error in log below 1ulp, we compute log
44e7780530SDavid Schultz  *	by
45e7780530SDavid Schultz  *		log(1+f) = f - s*(f - R)	(if f is not too large)
46e7780530SDavid Schultz  *		log(1+f) = f - (hfsq - s*(hfsq+R)).	(better accuracy)
47e7780530SDavid Schultz  *
48e7780530SDavid Schultz  *	3. Finally,  log(x) = k*ln2 + log(1+f).
49e7780530SDavid Schultz  *			    = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
50e7780530SDavid Schultz  *	   Here ln2 is split into two floating point number:
51e7780530SDavid Schultz  *			ln2_hi + ln2_lo,
52e7780530SDavid Schultz  *	   where n*ln2_hi is always exact for |n| < 2000.
53e7780530SDavid Schultz  *
54e7780530SDavid Schultz  * Special cases:
55e7780530SDavid Schultz  *	log(x) is NaN with signal if x < 0 (including -INF) ;
56e7780530SDavid Schultz  *	log(+INF) is +INF; log(0) is -INF with signal;
57e7780530SDavid Schultz  *	log(NaN) is that NaN with no signal.
58e7780530SDavid Schultz  *
59e7780530SDavid Schultz  * Accuracy:
60e7780530SDavid Schultz  *	according to an error analysis, the error is always less than
61e7780530SDavid Schultz  *	1 ulp (unit in the last place).
62e7780530SDavid Schultz  *
63e7780530SDavid Schultz  * Constants:
64e7780530SDavid Schultz  * The hexadecimal values are the intended ones for the following
65e7780530SDavid Schultz  * constants. The decimal values may be used, provided that the
66e7780530SDavid Schultz  * compiler will convert from decimal to binary accurately enough
67e7780530SDavid Schultz  * to produce the hexadecimal values shown.
68e7780530SDavid Schultz  */
69e7780530SDavid Schultz 
70e7780530SDavid Schultz static const double
71e7780530SDavid Schultz Lg1 = 6.666666666666735130e-01,  /* 3FE55555 55555593 */
72e7780530SDavid Schultz Lg2 = 3.999999999940941908e-01,  /* 3FD99999 9997FA04 */
73e7780530SDavid Schultz Lg3 = 2.857142874366239149e-01,  /* 3FD24924 94229359 */
74e7780530SDavid Schultz Lg4 = 2.222219843214978396e-01,  /* 3FCC71C5 1D8E78AF */
75e7780530SDavid Schultz Lg5 = 1.818357216161805012e-01,  /* 3FC74664 96CB03DE */
76e7780530SDavid Schultz Lg6 = 1.531383769920937332e-01,  /* 3FC39A09 D078C69F */
77e7780530SDavid Schultz Lg7 = 1.479819860511658591e-01;  /* 3FC2F112 DF3E5244 */
78e7780530SDavid Schultz 
79e7780530SDavid Schultz /*
80*b052ec90SDavid Schultz  * We always inline k_log1p(), since doing so produces a
81e7780530SDavid Schultz  * substantial performance improvement (~40% on amd64).
82e7780530SDavid Schultz  */
83e7780530SDavid Schultz static inline double
k_log1p(double f)84*b052ec90SDavid Schultz k_log1p(double f)
85e7780530SDavid Schultz {
86*b052ec90SDavid Schultz 	double hfsq,s,z,R,w,t1,t2;
87e7780530SDavid Schultz 
88e7780530SDavid Schultz  	s = f/(2.0+f);
89e7780530SDavid Schultz 	z = s*s;
90e7780530SDavid Schultz 	w = z*z;
91e7780530SDavid Schultz 	t1= w*(Lg2+w*(Lg4+w*Lg6));
92e7780530SDavid Schultz 	t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
93e7780530SDavid Schultz 	R = t2+t1;
94e7780530SDavid Schultz 	hfsq=0.5*f*f;
95*b052ec90SDavid Schultz 	return s*(hfsq+R);
96e7780530SDavid Schultz }
97