1e7780530SDavid Schultz
2e7780530SDavid Schultz /*
3e7780530SDavid Schultz * ====================================================
4e7780530SDavid Schultz * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5e7780530SDavid Schultz *
6e7780530SDavid Schultz * Developed at SunSoft, a Sun Microsystems, Inc. business.
7e7780530SDavid Schultz * Permission to use, copy, modify, and distribute this
8e7780530SDavid Schultz * software is freely granted, provided that this notice
9e7780530SDavid Schultz * is preserved.
10e7780530SDavid Schultz * ====================================================
11e7780530SDavid Schultz */
12e7780530SDavid Schultz
13*b052ec90SDavid Schultz /*
14*b052ec90SDavid Schultz * k_log1p(f):
15*b052ec90SDavid Schultz * Return log(1+f) - f for 1+f in ~[sqrt(2)/2, sqrt(2)].
16e7780530SDavid Schultz *
17e7780530SDavid Schultz * The following describes the overall strategy for computing
18e7780530SDavid Schultz * logarithms in base e. The argument reduction and adding the final
19e7780530SDavid Schultz * term of the polynomial are done by the caller for increased accuracy
20e7780530SDavid Schultz * when different bases are used.
21e7780530SDavid Schultz *
22e7780530SDavid Schultz * Method :
23e7780530SDavid Schultz * 1. Argument Reduction: find k and f such that
24e7780530SDavid Schultz * x = 2^k * (1+f),
25e7780530SDavid Schultz * where sqrt(2)/2 < 1+f < sqrt(2) .
26e7780530SDavid Schultz *
27e7780530SDavid Schultz * 2. Approximation of log(1+f).
28e7780530SDavid Schultz * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
29e7780530SDavid Schultz * = 2s + 2/3 s**3 + 2/5 s**5 + .....,
30e7780530SDavid Schultz * = 2s + s*R
31e7780530SDavid Schultz * We use a special Reme algorithm on [0,0.1716] to generate
32e7780530SDavid Schultz * a polynomial of degree 14 to approximate R The maximum error
33e7780530SDavid Schultz * of this polynomial approximation is bounded by 2**-58.45. In
34e7780530SDavid Schultz * other words,
35e7780530SDavid Schultz * 2 4 6 8 10 12 14
36e7780530SDavid Schultz * R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s
37e7780530SDavid Schultz * (the values of Lg1 to Lg7 are listed in the program)
38e7780530SDavid Schultz * and
39e7780530SDavid Schultz * | 2 14 | -58.45
40e7780530SDavid Schultz * | Lg1*s +...+Lg7*s - R(z) | <= 2
41e7780530SDavid Schultz * | |
42e7780530SDavid Schultz * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
43e7780530SDavid Schultz * In order to guarantee error in log below 1ulp, we compute log
44e7780530SDavid Schultz * by
45e7780530SDavid Schultz * log(1+f) = f - s*(f - R) (if f is not too large)
46e7780530SDavid Schultz * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)
47e7780530SDavid Schultz *
48e7780530SDavid Schultz * 3. Finally, log(x) = k*ln2 + log(1+f).
49e7780530SDavid Schultz * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
50e7780530SDavid Schultz * Here ln2 is split into two floating point number:
51e7780530SDavid Schultz * ln2_hi + ln2_lo,
52e7780530SDavid Schultz * where n*ln2_hi is always exact for |n| < 2000.
53e7780530SDavid Schultz *
54e7780530SDavid Schultz * Special cases:
55e7780530SDavid Schultz * log(x) is NaN with signal if x < 0 (including -INF) ;
56e7780530SDavid Schultz * log(+INF) is +INF; log(0) is -INF with signal;
57e7780530SDavid Schultz * log(NaN) is that NaN with no signal.
58e7780530SDavid Schultz *
59e7780530SDavid Schultz * Accuracy:
60e7780530SDavid Schultz * according to an error analysis, the error is always less than
61e7780530SDavid Schultz * 1 ulp (unit in the last place).
62e7780530SDavid Schultz *
63e7780530SDavid Schultz * Constants:
64e7780530SDavid Schultz * The hexadecimal values are the intended ones for the following
65e7780530SDavid Schultz * constants. The decimal values may be used, provided that the
66e7780530SDavid Schultz * compiler will convert from decimal to binary accurately enough
67e7780530SDavid Schultz * to produce the hexadecimal values shown.
68e7780530SDavid Schultz */
69e7780530SDavid Schultz
70e7780530SDavid Schultz static const double
71e7780530SDavid Schultz Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */
72e7780530SDavid Schultz Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
73e7780530SDavid Schultz Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */
74e7780530SDavid Schultz Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
75e7780530SDavid Schultz Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
76e7780530SDavid Schultz Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
77e7780530SDavid Schultz Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
78e7780530SDavid Schultz
79e7780530SDavid Schultz /*
80*b052ec90SDavid Schultz * We always inline k_log1p(), since doing so produces a
81e7780530SDavid Schultz * substantial performance improvement (~40% on amd64).
82e7780530SDavid Schultz */
83e7780530SDavid Schultz static inline double
k_log1p(double f)84*b052ec90SDavid Schultz k_log1p(double f)
85e7780530SDavid Schultz {
86*b052ec90SDavid Schultz double hfsq,s,z,R,w,t1,t2;
87e7780530SDavid Schultz
88e7780530SDavid Schultz s = f/(2.0+f);
89e7780530SDavid Schultz z = s*s;
90e7780530SDavid Schultz w = z*z;
91e7780530SDavid Schultz t1= w*(Lg2+w*(Lg4+w*Lg6));
92e7780530SDavid Schultz t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
93e7780530SDavid Schultz R = t2+t1;
94e7780530SDavid Schultz hfsq=0.5*f*f;
95*b052ec90SDavid Schultz return s*(hfsq+R);
96e7780530SDavid Schultz }
97