xref: /freebsd/lib/msun/src/k_exp.c (revision 60a517b66a69b8c011b04063ef63a938738719bd)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2011 David Schultz <das@FreeBSD.ORG>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <complex.h>
30 
31 #include "math.h"
32 #include "math_private.h"
33 
34 static const uint32_t k = 1799;		/* constant for reduction */
35 static const double kln2 =  1246.97177782734161156;	/* k * ln2 */
36 
37 /*
38  * Compute exp(x), scaled to avoid spurious overflow.  An exponent is
39  * returned separately in 'expt'.
40  *
41  * Input:  ln(DBL_MAX) <= x < ln(2 * DBL_MAX / DBL_MIN_DENORM) ~= 1454.91
42  * Output: 2**1023 <= y < 2**1024
43  */
44 static double
45 __frexp_exp(double x, int *expt)
46 {
47 	double exp_x;
48 	uint32_t hx;
49 
50 	/*
51 	 * We use exp(x) = exp(x - kln2) * 2**k, carefully chosen to
52 	 * minimize |exp(kln2) - 2**k|.  We also scale the exponent of
53 	 * exp_x to MAX_EXP so that the result can be multiplied by
54 	 * a tiny number without losing accuracy due to denormalization.
55 	 */
56 	exp_x = exp(x - kln2);
57 	GET_HIGH_WORD(hx, exp_x);
58 	*expt = (hx >> 20) - (0x3ff + 1023) + k;
59 	SET_HIGH_WORD(exp_x, (hx & 0xfffff) | ((0x3ff + 1023) << 20));
60 	return (exp_x);
61 }
62 
63 /*
64  * __ldexp_exp(x, expt) and __ldexp_cexp(x, expt) compute exp(x) * 2**expt.
65  * They are intended for large arguments (real part >= ln(DBL_MAX))
66  * where care is needed to avoid overflow.
67  *
68  * The present implementation is narrowly tailored for our hyperbolic and
69  * exponential functions.  We assume expt is small (0 or -1), and the caller
70  * has filtered out very large x, for which overflow would be inevitable.
71  */
72 
73 double
74 __ldexp_exp(double x, int expt)
75 {
76 	double exp_x, scale;
77 	int ex_expt;
78 
79 	exp_x = __frexp_exp(x, &ex_expt);
80 	expt += ex_expt;
81 	INSERT_WORDS(scale, (0x3ff + expt) << 20, 0);
82 	return (exp_x * scale);
83 }
84 
85 double complex
86 __ldexp_cexp(double complex z, int expt)
87 {
88 	double c, exp_x, s, scale1, scale2, x, y;
89 	int ex_expt, half_expt;
90 
91 	x = creal(z);
92 	y = cimag(z);
93 	exp_x = __frexp_exp(x, &ex_expt);
94 	expt += ex_expt;
95 
96 	/*
97 	 * Arrange so that scale1 * scale2 == 2**expt.  We use this to
98 	 * compensate for scalbn being horrendously slow.
99 	 */
100 	half_expt = expt / 2;
101 	INSERT_WORDS(scale1, (0x3ff + half_expt) << 20, 0);
102 	half_expt = expt - half_expt;
103 	INSERT_WORDS(scale2, (0x3ff + half_expt) << 20, 0);
104 
105 	sincos(y, &s, &c);
106 	return (CMPLX(c * exp_x * scale1 * scale2,
107 	    s * exp_x * scale1 * scale2));
108 }
109