13f708241SDavid Schultz 23f708241SDavid Schultz /* @(#)k_cos.c 1.3 95/01/18 */ 33a8617a8SJordan K. Hubbard /* 43a8617a8SJordan K. Hubbard * ==================================================== 53a8617a8SJordan K. Hubbard * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. 63a8617a8SJordan K. Hubbard * 73f708241SDavid Schultz * Developed at SunSoft, a Sun Microsystems, Inc. business. 83a8617a8SJordan K. Hubbard * Permission to use, copy, modify, and distribute this 93a8617a8SJordan K. Hubbard * software is freely granted, provided that this notice 103a8617a8SJordan K. Hubbard * is preserved. 113a8617a8SJordan K. Hubbard * ==================================================== 123a8617a8SJordan K. Hubbard */ 133a8617a8SJordan K. Hubbard 143a8617a8SJordan K. Hubbard #ifndef lint 157f3dea24SPeter Wemm static char rcsid[] = "$FreeBSD$"; 163a8617a8SJordan K. Hubbard #endif 173a8617a8SJordan K. Hubbard 183a8617a8SJordan K. Hubbard /* 193a8617a8SJordan K. Hubbard * __kernel_cos( x, y ) 203a8617a8SJordan K. Hubbard * kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164 213a8617a8SJordan K. Hubbard * Input x is assumed to be bounded by ~pi/4 in magnitude. 223a8617a8SJordan K. Hubbard * Input y is the tail of x. 233a8617a8SJordan K. Hubbard * 243a8617a8SJordan K. Hubbard * Algorithm 253a8617a8SJordan K. Hubbard * 1. Since cos(-x) = cos(x), we need only to consider positive x. 263a8617a8SJordan K. Hubbard * 2. if x < 2^-27 (hx<0x3e400000 0), return 1 with inexact if x!=0. 273a8617a8SJordan K. Hubbard * 3. cos(x) is approximated by a polynomial of degree 14 on 283a8617a8SJordan K. Hubbard * [0,pi/4] 293a8617a8SJordan K. Hubbard * 4 14 303a8617a8SJordan K. Hubbard * cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x 313a8617a8SJordan K. Hubbard * where the remez error is 323a8617a8SJordan K. Hubbard * 333a8617a8SJordan K. Hubbard * | 2 4 6 8 10 12 14 | -58 343a8617a8SJordan K. Hubbard * |cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x +C6*x )| <= 2 353a8617a8SJordan K. Hubbard * | | 363a8617a8SJordan K. Hubbard * 373a8617a8SJordan K. Hubbard * 4 6 8 10 12 14 383a8617a8SJordan K. Hubbard * 4. let r = C1*x +C2*x +C3*x +C4*x +C5*x +C6*x , then 393b46e988SBruce Evans * cos(x) ~ 1 - x*x/2 + r 403a8617a8SJordan K. Hubbard * since cos(x+y) ~ cos(x) - sin(x)*y 413a8617a8SJordan K. Hubbard * ~ cos(x) - x*y, 423a8617a8SJordan K. Hubbard * a correction term is necessary in cos(x) and hence 433a8617a8SJordan K. Hubbard * cos(x+y) = 1 - (x*x/2 - (r - x*y)) 443b46e988SBruce Evans * For better accuracy, rearrange to 453b46e988SBruce Evans * cos(x+y) ~ w + (tmp + (r-x*y)) 463b46e988SBruce Evans * where w = 1 - x*x/2 and tmp is a tiny correction term 473b46e988SBruce Evans * (1 - x*x/2 == w + tmp exactly in infinite precision). 483b46e988SBruce Evans * The exactness of w + tmp in infinite precision depends on w 493b46e988SBruce Evans * and tmp having the same precision as x. If they have extra 503b46e988SBruce Evans * precision due to compiler bugs, then the extra precision is 513b46e988SBruce Evans * only good provided it is retained in all terms of the final 523b46e988SBruce Evans * expression for cos(). Retention happens in all cases tested 533b46e988SBruce Evans * under FreeBSD, so don't pessimize things by forcibly clipping 543b46e988SBruce Evans * any extra precision in w. 553a8617a8SJordan K. Hubbard */ 563a8617a8SJordan K. Hubbard 573a8617a8SJordan K. Hubbard #include "math.h" 583a8617a8SJordan K. Hubbard #include "math_private.h" 593a8617a8SJordan K. Hubbard 603a8617a8SJordan K. Hubbard static const double 613a8617a8SJordan K. Hubbard one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ 623a8617a8SJordan K. Hubbard C1 = 4.16666666666666019037e-02, /* 0x3FA55555, 0x5555554C */ 633a8617a8SJordan K. Hubbard C2 = -1.38888888888741095749e-03, /* 0xBF56C16C, 0x16C15177 */ 643a8617a8SJordan K. Hubbard C3 = 2.48015872894767294178e-05, /* 0x3EFA01A0, 0x19CB1590 */ 653a8617a8SJordan K. Hubbard C4 = -2.75573143513906633035e-07, /* 0xBE927E4F, 0x809C52AD */ 663a8617a8SJordan K. Hubbard C5 = 2.08757232129817482790e-09, /* 0x3E21EE9E, 0xBDB4B1C4 */ 673a8617a8SJordan K. Hubbard C6 = -1.13596475577881948265e-11; /* 0xBDA8FAE9, 0xBE8838D4 */ 683a8617a8SJordan K. Hubbard 6959b19ff1SAlfred Perlstein double 7059b19ff1SAlfred Perlstein __kernel_cos(double x, double y) 713a8617a8SJordan K. Hubbard { 723b46e988SBruce Evans double hz,z,r,w; 733b46e988SBruce Evans 743a8617a8SJordan K. Hubbard z = x*x; 753a8617a8SJordan K. Hubbard r = z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*C6))))); 76fc84b771SBruce Evans hz = 0.5*z; 773b46e988SBruce Evans w = one-hz; 783b46e988SBruce Evans return w + (((one-w)-hz) + (z*r-x*y)); 793a8617a8SJordan K. Hubbard } 80