xref: /freebsd/lib/msun/src/e_sqrtl.c (revision ebacd8013fe5f7fdf9f6a5b286f6680dd2891036)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2007 Steven G. Kargl
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include <fenv.h>
33 #include <float.h>
34 
35 #include "fpmath.h"
36 #include "math.h"
37 
38 /* Return (x + ulp) for normal positive x. Assumes no overflow. */
39 static inline long double
40 inc(long double x)
41 {
42 	union IEEEl2bits u;
43 
44 	u.e = x;
45 	if (++u.bits.manl == 0) {
46 		if (++u.bits.manh == 0) {
47 			u.bits.exp++;
48 			u.bits.manh |= LDBL_NBIT;
49 		}
50 	}
51 	return (u.e);
52 }
53 
54 /* Return (x - ulp) for normal positive x. Assumes no underflow. */
55 static inline long double
56 dec(long double x)
57 {
58 	union IEEEl2bits u;
59 
60 	u.e = x;
61 	if (u.bits.manl-- == 0) {
62 		if (u.bits.manh-- == LDBL_NBIT) {
63 			u.bits.exp--;
64 			u.bits.manh |= LDBL_NBIT;
65 		}
66 	}
67 	return (u.e);
68 }
69 
70 #pragma STDC FENV_ACCESS ON
71 
72 /*
73  * This is slow, but simple and portable. You should use hardware sqrt
74  * if possible.
75  */
76 
77 long double
78 sqrtl(long double x)
79 {
80 	union IEEEl2bits u;
81 	int k, r;
82 	long double lo, xn;
83 	fenv_t env;
84 
85 	u.e = x;
86 
87 	/* If x = NaN, then sqrt(x) = NaN. */
88 	/* If x = Inf, then sqrt(x) = Inf. */
89 	/* If x = -Inf, then sqrt(x) = NaN. */
90 	if (u.bits.exp == LDBL_MAX_EXP * 2 - 1)
91 		return (x * x + x);
92 
93 	/* If x = +-0, then sqrt(x) = +-0. */
94 	if ((u.bits.manh | u.bits.manl | u.bits.exp) == 0)
95 		return (x);
96 
97 	/* If x < 0, then raise invalid and return NaN */
98 	if (u.bits.sign)
99 		return ((x - x) / (x - x));
100 
101 	feholdexcept(&env);
102 
103 	if (u.bits.exp == 0) {
104 		/* Adjust subnormal numbers. */
105 		u.e *= 0x1.0p514;
106 		k = -514;
107 	} else {
108 		k = 0;
109 	}
110 	/*
111 	 * u.e is a normal number, so break it into u.e = e*2^n where
112 	 * u.e = (2*e)*2^2k for odd n and u.e = (4*e)*2^2k for even n.
113 	 */
114 	if ((u.bits.exp - 0x3ffe) & 1) {	/* n is odd.     */
115 		k += u.bits.exp - 0x3fff;	/* 2k = n - 1.   */
116 		u.bits.exp = 0x3fff;		/* u.e in [1,2). */
117 	} else {
118 		k += u.bits.exp - 0x4000;	/* 2k = n - 2.   */
119 		u.bits.exp = 0x4000;		/* u.e in [2,4). */
120 	}
121 
122 	/*
123 	 * Newton's iteration.
124 	 * Split u.e into a high and low part to achieve additional precision.
125 	 */
126 	xn = sqrt(u.e);			/* 53-bit estimate of sqrtl(x). */
127 #if LDBL_MANT_DIG > 100
128 	xn = (xn + (u.e / xn)) * 0.5;	/* 106-bit estimate. */
129 #endif
130 	lo = u.e;
131 	u.bits.manl = 0;		/* Zero out lower bits. */
132 	lo = (lo - u.e) / xn;		/* Low bits divided by xn. */
133 	xn = xn + (u.e / xn);		/* High portion of estimate. */
134 	u.e = xn + lo;			/* Combine everything. */
135 	u.bits.exp += (k >> 1) - 1;
136 
137 	feclearexcept(FE_INEXACT);
138 	r = fegetround();
139 	fesetround(FE_TOWARDZERO);	/* Set to round-toward-zero. */
140 	xn = x / u.e;			/* Chopped quotient (inexact?). */
141 
142 	if (!fetestexcept(FE_INEXACT)) { /* Quotient is exact. */
143 		if (xn == u.e) {
144 			fesetenv(&env);
145 			return (u.e);
146 		}
147 		/* Round correctly for inputs like x = y**2 - ulp. */
148 		xn = dec(xn);		/* xn = xn - ulp. */
149 	}
150 
151 	if (r == FE_TONEAREST) {
152 		xn = inc(xn);		/* xn = xn + ulp. */
153 	} else if (r == FE_UPWARD) {
154 		u.e = inc(u.e);		/* u.e = u.e + ulp. */
155 		xn = inc(xn);		/* xn  = xn + ulp. */
156 	}
157 	u.e = u.e + xn;				/* Chopped sum. */
158 	feupdateenv(&env);	/* Restore env and raise inexact */
159 	u.bits.exp--;
160 	return (u.e);
161 }
162