xref: /freebsd/lib/msun/src/e_sqrtl.c (revision b78ee15e9f04ae15c3e1200df974473167524d17)
1 /*-
2  * Copyright (c) 2007 Steven G. Kargl
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include <fenv.h>
31 #include <float.h>
32 
33 #include "fpmath.h"
34 #include "math.h"
35 
36 /* Return (x + ulp) for normal positive x. Assumes no overflow. */
37 static inline long double
38 inc(long double x)
39 {
40 	union IEEEl2bits u;
41 
42 	u.e = x;
43 	if (++u.bits.manl == 0) {
44 		if (++u.bits.manh == 0) {
45 			u.bits.exp++;
46 			u.bits.manh |= LDBL_NBIT;
47 		}
48 	}
49 	return (u.e);
50 }
51 
52 /* Return (x - ulp) for normal positive x. Assumes no underflow. */
53 static inline long double
54 dec(long double x)
55 {
56 	union IEEEl2bits u;
57 
58 	u.e = x;
59 	if (u.bits.manl-- == 0) {
60 		if (u.bits.manh-- == LDBL_NBIT) {
61 			u.bits.exp--;
62 			u.bits.manh |= LDBL_NBIT;
63 		}
64 	}
65 	return (u.e);
66 }
67 
68 #pragma STDC FENV_ACCESS ON
69 
70 /*
71  * This is slow, but simple and portable. You should use hardware sqrt
72  * if possible.
73  */
74 
75 long double
76 sqrtl(long double x)
77 {
78 	union IEEEl2bits u;
79 	int k, r;
80 	long double lo, xn;
81 	fenv_t env;
82 
83 	u.e = x;
84 
85 	/* If x = NaN, then sqrt(x) = NaN. */
86 	/* If x = Inf, then sqrt(x) = Inf. */
87 	/* If x = -Inf, then sqrt(x) = NaN. */
88 	if (u.bits.exp == LDBL_MAX_EXP * 2 - 1)
89 		return (x * x + x);
90 
91 	/* If x = +-0, then sqrt(x) = +-0. */
92 	if ((u.bits.manh | u.bits.manl | u.bits.exp) == 0)
93 		return (x);
94 
95 	/* If x < 0, then raise invalid and return NaN */
96 	if (u.bits.sign)
97 		return ((x - x) / (x - x));
98 
99 	feholdexcept(&env);
100 
101 	if (u.bits.exp == 0) {
102 		/* Adjust subnormal numbers. */
103 		u.e *= 0x1.0p514;
104 		k = -514;
105 	} else {
106 		k = 0;
107 	}
108 	/*
109 	 * u.e is a normal number, so break it into u.e = e*2^n where
110 	 * u.e = (2*e)*2^2k for odd n and u.e = (4*e)*2^2k for even n.
111 	 */
112 	if ((u.bits.exp - 0x3ffe) & 1) {	/* n is odd.     */
113 		k += u.bits.exp - 0x3fff;	/* 2k = n - 1.   */
114 		u.bits.exp = 0x3fff;		/* u.e in [1,2). */
115 	} else {
116 		k += u.bits.exp - 0x4000;	/* 2k = n - 2.   */
117 		u.bits.exp = 0x4000;		/* u.e in [2,4). */
118 	}
119 
120 	/*
121 	 * Newton's iteration.
122 	 * Split u.e into a high and low part to achieve additional precision.
123 	 */
124 	xn = sqrt(u.e);			/* 53-bit estimate of sqrtl(x). */
125 #if LDBL_MANT_DIG > 100
126 	xn = (xn + (u.e / xn)) * 0.5;	/* 106-bit estimate. */
127 #endif
128 	lo = u.e;
129 	u.bits.manl = 0;		/* Zero out lower bits. */
130 	lo = (lo - u.e) / xn;		/* Low bits divided by xn. */
131 	xn = xn + (u.e / xn);		/* High portion of estimate. */
132 	u.e = xn + lo;			/* Combine everything. */
133 	u.bits.exp += (k >> 1) - 1;
134 
135 	feclearexcept(FE_INEXACT);
136 	r = fegetround();
137 	fesetround(FE_TOWARDZERO);	/* Set to round-toward-zero. */
138 	xn = x / u.e;			/* Chopped quotient (inexact?). */
139 
140 	if (!fetestexcept(FE_INEXACT)) { /* Quotient is exact. */
141 		if (xn == u.e) {
142 			fesetenv(&env);
143 			return (u.e);
144 		}
145 		/* Round correctly for inputs like x = y**2 - ulp. */
146 		xn = dec(xn);		/* xn = xn - ulp. */
147 	}
148 
149 	if (r == FE_TONEAREST) {
150 		xn = inc(xn);		/* xn = xn + ulp. */
151 	} else if (r == FE_UPWARD) {
152 		u.e = inc(u.e);		/* u.e = u.e + ulp. */
153 		xn = inc(xn);		/* xn  = xn + ulp. */
154 	}
155 	u.e = u.e + xn;				/* Chopped sum. */
156 	feupdateenv(&env);	/* Restore env and raise inexact */
157 	u.bits.exp--;
158 	return (u.e);
159 }
160