xref: /freebsd/lib/msun/src/e_sqrt.c (revision 2b743a9e9ddc6736208dc8ca1ce06ce64ad20a19)
1 
2 /* @(#)e_sqrt.c 1.3 95/01/18 */
3 /*
4  * ====================================================
5  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6  *
7  * Developed at SunSoft, a Sun Microsystems, Inc. business.
8  * Permission to use, copy, modify, and distribute this
9  * software is freely granted, provided that this notice
10  * is preserved.
11  * ====================================================
12  */
13 
14 #ifndef lint
15 static char rcsid[] = "$FreeBSD$";
16 #endif
17 
18 /* __ieee754_sqrt(x)
19  * Return correctly rounded sqrt.
20  *           ------------------------------------------
21  *	     |  Use the hardware sqrt if you have one |
22  *           ------------------------------------------
23  * Method:
24  *   Bit by bit method using integer arithmetic. (Slow, but portable)
25  *   1. Normalization
26  *	Scale x to y in [1,4) with even powers of 2:
27  *	find an integer k such that  1 <= (y=x*2^(2k)) < 4, then
28  *		sqrt(x) = 2^k * sqrt(y)
29  *   2. Bit by bit computation
30  *	Let q  = sqrt(y) truncated to i bit after binary point (q = 1),
31  *	     i							 0
32  *                                     i+1         2
33  *	    s  = 2*q , and	y  =  2   * ( y - q  ).		(1)
34  *	     i      i            i                 i
35  *
36  *	To compute q    from q , one checks whether
37  *		    i+1       i
38  *
39  *			      -(i+1) 2
40  *			(q + 2      ) <= y.			(2)
41  *     			  i
42  *							      -(i+1)
43  *	If (2) is false, then q   = q ; otherwise q   = q  + 2      .
44  *		 	       i+1   i             i+1   i
45  *
46  *	With some algebric manipulation, it is not difficult to see
47  *	that (2) is equivalent to
48  *                             -(i+1)
49  *			s  +  2       <= y			(3)
50  *			 i                i
51  *
52  *	The advantage of (3) is that s  and y  can be computed by
53  *				      i      i
54  *	the following recurrence formula:
55  *	    if (3) is false
56  *
57  *	    s     =  s  ,	y    = y   ;			(4)
58  *	     i+1      i		 i+1    i
59  *
60  *	    otherwise,
61  *                         -i                     -(i+1)
62  *	    s	  =  s  + 2  ,  y    = y  -  s  - 2  		(5)
63  *           i+1      i          i+1    i     i
64  *
65  *	One may easily use induction to prove (4) and (5).
66  *	Note. Since the left hand side of (3) contain only i+2 bits,
67  *	      it does not necessary to do a full (53-bit) comparison
68  *	      in (3).
69  *   3. Final rounding
70  *	After generating the 53 bits result, we compute one more bit.
71  *	Together with the remainder, we can decide whether the
72  *	result is exact, bigger than 1/2ulp, or less than 1/2ulp
73  *	(it will never equal to 1/2ulp).
74  *	The rounding mode can be detected by checking whether
75  *	huge + tiny is equal to huge, and whether huge - tiny is
76  *	equal to huge for some floating point number "huge" and "tiny".
77  *
78  * Special cases:
79  *	sqrt(+-0) = +-0 	... exact
80  *	sqrt(inf) = inf
81  *	sqrt(-ve) = NaN		... with invalid signal
82  *	sqrt(NaN) = NaN		... with invalid signal for signaling NaN
83  *
84  * Other methods : see the appended file at the end of the program below.
85  *---------------
86  */
87 
88 #include "math.h"
89 #include "math_private.h"
90 
91 static	const double	one	= 1.0, tiny=1.0e-300;
92 
93 double
94 __ieee754_sqrt(double x)
95 {
96 	double z;
97 	int32_t sign = (int)0x80000000;
98 	int32_t ix0,s0,q,m,t,i;
99 	u_int32_t r,t1,s1,ix1,q1;
100 
101 	EXTRACT_WORDS(ix0,ix1,x);
102 
103     /* take care of Inf and NaN */
104 	if((ix0&0x7ff00000)==0x7ff00000) {
105 	    return x*x+x;		/* sqrt(NaN)=NaN, sqrt(+inf)=+inf
106 					   sqrt(-inf)=sNaN */
107 	}
108     /* take care of zero */
109 	if(ix0<=0) {
110 	    if(((ix0&(~sign))|ix1)==0) return x;/* sqrt(+-0) = +-0 */
111 	    else if(ix0<0)
112 		return (x-x)/(x-x);		/* sqrt(-ve) = sNaN */
113 	}
114     /* normalize x */
115 	m = (ix0>>20);
116 	if(m==0) {				/* subnormal x */
117 	    while(ix0==0) {
118 		m -= 21;
119 		ix0 |= (ix1>>11); ix1 <<= 21;
120 	    }
121 	    for(i=0;(ix0&0x00100000)==0;i++) ix0<<=1;
122 	    m -= i-1;
123 	    ix0 |= (ix1>>(32-i));
124 	    ix1 <<= i;
125 	}
126 	m -= 1023;	/* unbias exponent */
127 	ix0 = (ix0&0x000fffff)|0x00100000;
128 	if(m&1){	/* odd m, double x to make it even */
129 	    ix0 += ix0 + ((ix1&sign)>>31);
130 	    ix1 += ix1;
131 	}
132 	m >>= 1;	/* m = [m/2] */
133 
134     /* generate sqrt(x) bit by bit */
135 	ix0 += ix0 + ((ix1&sign)>>31);
136 	ix1 += ix1;
137 	q = q1 = s0 = s1 = 0;	/* [q,q1] = sqrt(x) */
138 	r = 0x00200000;		/* r = moving bit from right to left */
139 
140 	while(r!=0) {
141 	    t = s0+r;
142 	    if(t<=ix0) {
143 		s0   = t+r;
144 		ix0 -= t;
145 		q   += r;
146 	    }
147 	    ix0 += ix0 + ((ix1&sign)>>31);
148 	    ix1 += ix1;
149 	    r>>=1;
150 	}
151 
152 	r = sign;
153 	while(r!=0) {
154 	    t1 = s1+r;
155 	    t  = s0;
156 	    if((t<ix0)||((t==ix0)&&(t1<=ix1))) {
157 		s1  = t1+r;
158 		if(((t1&sign)==sign)&&(s1&sign)==0) s0 += 1;
159 		ix0 -= t;
160 		if (ix1 < t1) ix0 -= 1;
161 		ix1 -= t1;
162 		q1  += r;
163 	    }
164 	    ix0 += ix0 + ((ix1&sign)>>31);
165 	    ix1 += ix1;
166 	    r>>=1;
167 	}
168 
169     /* use floating add to find out rounding direction */
170 	if((ix0|ix1)!=0) {
171 	    z = one-tiny; /* trigger inexact flag */
172 	    if (z>=one) {
173 	        z = one+tiny;
174 	        if (q1==(u_int32_t)0xffffffff) { q1=0; q += 1;}
175 		else if (z>one) {
176 		    if (q1==(u_int32_t)0xfffffffe) q+=1;
177 		    q1+=2;
178 		} else
179 	            q1 += (q1&1);
180 	    }
181 	}
182 	ix0 = (q>>1)+0x3fe00000;
183 	ix1 =  q1>>1;
184 	if ((q&1)==1) ix1 |= sign;
185 	ix0 += (m <<20);
186 	INSERT_WORDS(z,ix0,ix1);
187 	return z;
188 }
189 
190 /*
191 Other methods  (use floating-point arithmetic)
192 -------------
193 (This is a copy of a drafted paper by Prof W. Kahan
194 and K.C. Ng, written in May, 1986)
195 
196 	Two algorithms are given here to implement sqrt(x)
197 	(IEEE double precision arithmetic) in software.
198 	Both supply sqrt(x) correctly rounded. The first algorithm (in
199 	Section A) uses newton iterations and involves four divisions.
200 	The second one uses reciproot iterations to avoid division, but
201 	requires more multiplications. Both algorithms need the ability
202 	to chop results of arithmetic operations instead of round them,
203 	and the INEXACT flag to indicate when an arithmetic operation
204 	is executed exactly with no roundoff error, all part of the
205 	standard (IEEE 754-1985). The ability to perform shift, add,
206 	subtract and logical AND operations upon 32-bit words is needed
207 	too, though not part of the standard.
208 
209 A.  sqrt(x) by Newton Iteration
210 
211    (1)	Initial approximation
212 
213 	Let x0 and x1 be the leading and the trailing 32-bit words of
214 	a floating point number x (in IEEE double format) respectively
215 
216 	    1    11		     52				  ...widths
217 	   ------------------------------------------------------
218 	x: |s|	  e     |	      f				|
219 	   ------------------------------------------------------
220 	      msb    lsb  msb				      lsb ...order
221 
222 
223 	     ------------------------  	     ------------------------
224 	x0:  |s|   e    |    f1     |	 x1: |          f2           |
225 	     ------------------------  	     ------------------------
226 
227 	By performing shifts and subtracts on x0 and x1 (both regarded
228 	as integers), we obtain an 8-bit approximation of sqrt(x) as
229 	follows.
230 
231 		k  := (x0>>1) + 0x1ff80000;
232 		y0 := k - T1[31&(k>>15)].	... y ~ sqrt(x) to 8 bits
233 	Here k is a 32-bit integer and T1[] is an integer array containing
234 	correction terms. Now magically the floating value of y (y's
235 	leading 32-bit word is y0, the value of its trailing word is 0)
236 	approximates sqrt(x) to almost 8-bit.
237 
238 	Value of T1:
239 	static int T1[32]= {
240 	0,	1024,	3062,	5746,	9193,	13348,	18162,	23592,
241 	29598,	36145,	43202,	50740,	58733,	67158,	75992,	85215,
242 	83599,	71378,	60428,	50647,	41945,	34246,	27478,	21581,
243 	16499,	12183,	8588,	5674,	3403,	1742,	661,	130,};
244 
245     (2)	Iterative refinement
246 
247 	Apply Heron's rule three times to y, we have y approximates
248 	sqrt(x) to within 1 ulp (Unit in the Last Place):
249 
250 		y := (y+x/y)/2		... almost 17 sig. bits
251 		y := (y+x/y)/2		... almost 35 sig. bits
252 		y := y-(y-x/y)/2	... within 1 ulp
253 
254 
255 	Remark 1.
256 	    Another way to improve y to within 1 ulp is:
257 
258 		y := (y+x/y)		... almost 17 sig. bits to 2*sqrt(x)
259 		y := y - 0x00100006	... almost 18 sig. bits to sqrt(x)
260 
261 				2
262 			    (x-y )*y
263 		y := y + 2* ----------	...within 1 ulp
264 			       2
265 			     3y  + x
266 
267 
268 	This formula has one division fewer than the one above; however,
269 	it requires more multiplications and additions. Also x must be
270 	scaled in advance to avoid spurious overflow in evaluating the
271 	expression 3y*y+x. Hence it is not recommended uless division
272 	is slow. If division is very slow, then one should use the
273 	reciproot algorithm given in section B.
274 
275     (3) Final adjustment
276 
277 	By twiddling y's last bit it is possible to force y to be
278 	correctly rounded according to the prevailing rounding mode
279 	as follows. Let r and i be copies of the rounding mode and
280 	inexact flag before entering the square root program. Also we
281 	use the expression y+-ulp for the next representable floating
282 	numbers (up and down) of y. Note that y+-ulp = either fixed
283 	point y+-1, or multiply y by nextafter(1,+-inf) in chopped
284 	mode.
285 
286 		I := FALSE;	... reset INEXACT flag I
287 		R := RZ;	... set rounding mode to round-toward-zero
288 		z := x/y;	... chopped quotient, possibly inexact
289 		If(not I) then {	... if the quotient is exact
290 		    if(z=y) {
291 		        I := i;	 ... restore inexact flag
292 		        R := r;  ... restore rounded mode
293 		        return sqrt(x):=y.
294 		    } else {
295 			z := z - ulp;	... special rounding
296 		    }
297 		}
298 		i := TRUE;		... sqrt(x) is inexact
299 		If (r=RN) then z=z+ulp	... rounded-to-nearest
300 		If (r=RP) then {	... round-toward-+inf
301 		    y = y+ulp; z=z+ulp;
302 		}
303 		y := y+z;		... chopped sum
304 		y0:=y0-0x00100000;	... y := y/2 is correctly rounded.
305 	        I := i;	 		... restore inexact flag
306 	        R := r;  		... restore rounded mode
307 	        return sqrt(x):=y.
308 
309     (4)	Special cases
310 
311 	Square root of +inf, +-0, or NaN is itself;
312 	Square root of a negative number is NaN with invalid signal.
313 
314 
315 B.  sqrt(x) by Reciproot Iteration
316 
317    (1)	Initial approximation
318 
319 	Let x0 and x1 be the leading and the trailing 32-bit words of
320 	a floating point number x (in IEEE double format) respectively
321 	(see section A). By performing shifs and subtracts on x0 and y0,
322 	we obtain a 7.8-bit approximation of 1/sqrt(x) as follows.
323 
324 	    k := 0x5fe80000 - (x0>>1);
325 	    y0:= k - T2[63&(k>>14)].	... y ~ 1/sqrt(x) to 7.8 bits
326 
327 	Here k is a 32-bit integer and T2[] is an integer array
328 	containing correction terms. Now magically the floating
329 	value of y (y's leading 32-bit word is y0, the value of
330 	its trailing word y1 is set to zero) approximates 1/sqrt(x)
331 	to almost 7.8-bit.
332 
333 	Value of T2:
334 	static int T2[64]= {
335 	0x1500,	0x2ef8,	0x4d67,	0x6b02,	0x87be,	0xa395,	0xbe7a,	0xd866,
336 	0xf14a,	0x1091b,0x11fcd,0x13552,0x14999,0x15c98,0x16e34,0x17e5f,
337 	0x18d03,0x19a01,0x1a545,0x1ae8a,0x1b5c4,0x1bb01,0x1bfde,0x1c28d,
338 	0x1c2de,0x1c0db,0x1ba73,0x1b11c,0x1a4b5,0x1953d,0x18266,0x16be0,
339 	0x1683e,0x179d8,0x18a4d,0x19992,0x1a789,0x1b445,0x1bf61,0x1c989,
340 	0x1d16d,0x1d77b,0x1dddf,0x1e2ad,0x1e5bf,0x1e6e8,0x1e654,0x1e3cd,
341 	0x1df2a,0x1d635,0x1cb16,0x1be2c,0x1ae4e,0x19bde,0x1868e,0x16e2e,
342 	0x1527f,0x1334a,0x11051,0xe951,	0xbe01,	0x8e0d,	0x5924,	0x1edd,};
343 
344     (2)	Iterative refinement
345 
346 	Apply Reciproot iteration three times to y and multiply the
347 	result by x to get an approximation z that matches sqrt(x)
348 	to about 1 ulp. To be exact, we will have
349 		-1ulp < sqrt(x)-z<1.0625ulp.
350 
351 	... set rounding mode to Round-to-nearest
352 	   y := y*(1.5-0.5*x*y*y)	... almost 15 sig. bits to 1/sqrt(x)
353 	   y := y*((1.5-2^-30)+0.5*x*y*y)... about 29 sig. bits to 1/sqrt(x)
354 	... special arrangement for better accuracy
355 	   z := x*y			... 29 bits to sqrt(x), with z*y<1
356 	   z := z + 0.5*z*(1-z*y)	... about 1 ulp to sqrt(x)
357 
358 	Remark 2. The constant 1.5-2^-30 is chosen to bias the error so that
359 	(a) the term z*y in the final iteration is always less than 1;
360 	(b) the error in the final result is biased upward so that
361 		-1 ulp < sqrt(x) - z < 1.0625 ulp
362 	    instead of |sqrt(x)-z|<1.03125ulp.
363 
364     (3)	Final adjustment
365 
366 	By twiddling y's last bit it is possible to force y to be
367 	correctly rounded according to the prevailing rounding mode
368 	as follows. Let r and i be copies of the rounding mode and
369 	inexact flag before entering the square root program. Also we
370 	use the expression y+-ulp for the next representable floating
371 	numbers (up and down) of y. Note that y+-ulp = either fixed
372 	point y+-1, or multiply y by nextafter(1,+-inf) in chopped
373 	mode.
374 
375 	R := RZ;		... set rounding mode to round-toward-zero
376 	switch(r) {
377 	    case RN:		... round-to-nearest
378 	       if(x<= z*(z-ulp)...chopped) z = z - ulp; else
379 	       if(x<= z*(z+ulp)...chopped) z = z; else z = z+ulp;
380 	       break;
381 	    case RZ:case RM:	... round-to-zero or round-to--inf
382 	       R:=RP;		... reset rounding mod to round-to-+inf
383 	       if(x<z*z ... rounded up) z = z - ulp; else
384 	       if(x>=(z+ulp)*(z+ulp) ...rounded up) z = z+ulp;
385 	       break;
386 	    case RP:		... round-to-+inf
387 	       if(x>(z+ulp)*(z+ulp)...chopped) z = z+2*ulp; else
388 	       if(x>z*z ...chopped) z = z+ulp;
389 	       break;
390 	}
391 
392 	Remark 3. The above comparisons can be done in fixed point. For
393 	example, to compare x and w=z*z chopped, it suffices to compare
394 	x1 and w1 (the trailing parts of x and w), regarding them as
395 	two's complement integers.
396 
397 	...Is z an exact square root?
398 	To determine whether z is an exact square root of x, let z1 be the
399 	trailing part of z, and also let x0 and x1 be the leading and
400 	trailing parts of x.
401 
402 	If ((z1&0x03ffffff)!=0)	... not exact if trailing 26 bits of z!=0
403 	    I := 1;		... Raise Inexact flag: z is not exact
404 	else {
405 	    j := 1 - [(x0>>20)&1]	... j = logb(x) mod 2
406 	    k := z1 >> 26;		... get z's 25-th and 26-th
407 					    fraction bits
408 	    I := i or (k&j) or ((k&(j+j+1))!=(x1&3));
409 	}
410 	R:= r		... restore rounded mode
411 	return sqrt(x):=z.
412 
413 	If multiplication is cheaper then the foregoing red tape, the
414 	Inexact flag can be evaluated by
415 
416 	    I := i;
417 	    I := (z*z!=x) or I.
418 
419 	Note that z*z can overwrite I; this value must be sensed if it is
420 	True.
421 
422 	Remark 4. If z*z = x exactly, then bit 25 to bit 0 of z1 must be
423 	zero.
424 
425 		    --------------------
426 		z1: |        f2        |
427 		    --------------------
428 		bit 31		   bit 0
429 
430 	Further more, bit 27 and 26 of z1, bit 0 and 1 of x1, and the odd
431 	or even of logb(x) have the following relations:
432 
433 	-------------------------------------------------
434 	bit 27,26 of z1		bit 1,0 of x1	logb(x)
435 	-------------------------------------------------
436 	00			00		odd and even
437 	01			01		even
438 	10			10		odd
439 	10			00		even
440 	11			01		even
441 	-------------------------------------------------
442 
443     (4)	Special cases (see (4) of Section A).
444 
445  */
446 
447