xref: /freebsd/lib/msun/src/e_log2.c (revision bdcbfde31e8e9b343f113a1956384bdf30d1ed62)
1 
2 /*
3  * ====================================================
4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5  *
6  * Developed at SunSoft, a Sun Microsystems, Inc. business.
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  */
12 
13 #include <sys/cdefs.h>
14 /*
15  * Return the base 2 logarithm of x.  See e_log.c and k_log.h for most
16  * comments.
17  *
18  * This reduces x to {k, 1+f} exactly as in e_log.c, then calls the kernel,
19  * then does the combining and scaling steps
20  *    log2(x) = (f - 0.5*f*f + k_log1p(f)) / ln2 + k
21  * in not-quite-routine extra precision.
22  */
23 
24 #include <float.h>
25 
26 #include "math.h"
27 #include "math_private.h"
28 #include "k_log.h"
29 
30 static const double
31 two54      =  1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */
32 ivln2hi    =  1.44269504072144627571e+00, /* 0x3ff71547, 0x65200000 */
33 ivln2lo    =  1.67517131648865118353e-10; /* 0x3de705fc, 0x2eefa200 */
34 
35 static const double zero   =  0.0;
36 static volatile double vzero = 0.0;
37 
38 double
39 log2(double x)
40 {
41 	double f,hfsq,hi,lo,r,val_hi,val_lo,w,y;
42 	int32_t i,k,hx;
43 	u_int32_t lx;
44 
45 	EXTRACT_WORDS(hx,lx,x);
46 
47 	k=0;
48 	if (hx < 0x00100000) {			/* x < 2**-1022  */
49 	    if (((hx&0x7fffffff)|lx)==0)
50 		return -two54/vzero;		/* log(+-0)=-inf */
51 	    if (hx<0) return (x-x)/zero;	/* log(-#) = NaN */
52 	    k -= 54; x *= two54; /* subnormal number, scale up x */
53 	    GET_HIGH_WORD(hx,x);
54 	}
55 	if (hx >= 0x7ff00000) return x+x;
56 	if (hx == 0x3ff00000 && lx == 0)
57 	    return zero;			/* log(1) = +0 */
58 	k += (hx>>20)-1023;
59 	hx &= 0x000fffff;
60 	i = (hx+0x95f64)&0x100000;
61 	SET_HIGH_WORD(x,hx|(i^0x3ff00000));	/* normalize x or x/2 */
62 	k += (i>>20);
63 	y = (double)k;
64 	f = x - 1.0;
65 	hfsq = 0.5*f*f;
66 	r = k_log1p(f);
67 
68 	/*
69 	 * f-hfsq must (for args near 1) be evaluated in extra precision
70 	 * to avoid a large cancellation when x is near sqrt(2) or 1/sqrt(2).
71 	 * This is fairly efficient since f-hfsq only depends on f, so can
72 	 * be evaluated in parallel with R.  Not combining hfsq with R also
73 	 * keeps R small (though not as small as a true `lo' term would be),
74 	 * so that extra precision is not needed for terms involving R.
75 	 *
76 	 * Compiler bugs involving extra precision used to break Dekker's
77 	 * theorem for spitting f-hfsq as hi+lo, unless double_t was used
78 	 * or the multi-precision calculations were avoided when double_t
79 	 * has extra precision.  These problems are now automatically
80 	 * avoided as a side effect of the optimization of combining the
81 	 * Dekker splitting step with the clear-low-bits step.
82 	 *
83 	 * y must (for args near sqrt(2) and 1/sqrt(2)) be added in extra
84 	 * precision to avoid a very large cancellation when x is very near
85 	 * these values.  Unlike the above cancellations, this problem is
86 	 * specific to base 2.  It is strange that adding +-1 is so much
87 	 * harder than adding +-ln2 or +-log10_2.
88 	 *
89 	 * This uses Dekker's theorem to normalize y+val_hi, so the
90 	 * compiler bugs are back in some configurations, sigh.  And I
91 	 * don't want to used double_t to avoid them, since that gives a
92 	 * pessimization and the support for avoiding the pessimization
93 	 * is not yet available.
94 	 *
95 	 * The multi-precision calculations for the multiplications are
96 	 * routine.
97 	 */
98 	hi = f - hfsq;
99 	SET_LOW_WORD(hi,0);
100 	lo = (f - hi) - hfsq + r;
101 	val_hi = hi*ivln2hi;
102 	val_lo = (lo+hi)*ivln2lo + lo*ivln2hi;
103 
104 	/* spadd(val_hi, val_lo, y), except for not using double_t: */
105 	w = y + val_hi;
106 	val_lo += (y - w) + val_hi;
107 	val_hi = w;
108 
109 	return val_lo + val_hi;
110 }
111 
112 #if (LDBL_MANT_DIG == 53)
113 __weak_reference(log2, log2l);
114 #endif
115