xref: /freebsd/lib/msun/src/e_log2.c (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 
2 /*
3  * ====================================================
4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5  *
6  * Developed at SunSoft, a Sun Microsystems, Inc. business.
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  */
12 
13 /*
14  * Return the base 2 logarithm of x.  See e_log.c and k_log.h for most
15  * comments.
16  *
17  * This reduces x to {k, 1+f} exactly as in e_log.c, then calls the kernel,
18  * then does the combining and scaling steps
19  *    log2(x) = (f - 0.5*f*f + k_log1p(f)) / ln2 + k
20  * in not-quite-routine extra precision.
21  */
22 
23 #include <float.h>
24 
25 #include "math.h"
26 #include "math_private.h"
27 #include "k_log.h"
28 
29 static const double
30 two54      =  1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */
31 ivln2hi    =  1.44269504072144627571e+00, /* 0x3ff71547, 0x65200000 */
32 ivln2lo    =  1.67517131648865118353e-10; /* 0x3de705fc, 0x2eefa200 */
33 
34 static const double zero   =  0.0;
35 static volatile double vzero = 0.0;
36 
37 double
38 log2(double x)
39 {
40 	double f,hfsq,hi,lo,r,val_hi,val_lo,w,y;
41 	int32_t i,k,hx;
42 	u_int32_t lx;
43 
44 	EXTRACT_WORDS(hx,lx,x);
45 
46 	k=0;
47 	if (hx < 0x00100000) {			/* x < 2**-1022  */
48 	    if (((hx&0x7fffffff)|lx)==0)
49 		return -two54/vzero;		/* log(+-0)=-inf */
50 	    if (hx<0) return (x-x)/zero;	/* log(-#) = NaN */
51 	    k -= 54; x *= two54; /* subnormal number, scale up x */
52 	    GET_HIGH_WORD(hx,x);
53 	}
54 	if (hx >= 0x7ff00000) return x+x;
55 	if (hx == 0x3ff00000 && lx == 0)
56 	    return zero;			/* log(1) = +0 */
57 	k += (hx>>20)-1023;
58 	hx &= 0x000fffff;
59 	i = (hx+0x95f64)&0x100000;
60 	SET_HIGH_WORD(x,hx|(i^0x3ff00000));	/* normalize x or x/2 */
61 	k += (i>>20);
62 	y = (double)k;
63 	f = x - 1.0;
64 	hfsq = 0.5*f*f;
65 	r = k_log1p(f);
66 
67 	/*
68 	 * f-hfsq must (for args near 1) be evaluated in extra precision
69 	 * to avoid a large cancellation when x is near sqrt(2) or 1/sqrt(2).
70 	 * This is fairly efficient since f-hfsq only depends on f, so can
71 	 * be evaluated in parallel with R.  Not combining hfsq with R also
72 	 * keeps R small (though not as small as a true `lo' term would be),
73 	 * so that extra precision is not needed for terms involving R.
74 	 *
75 	 * Compiler bugs involving extra precision used to break Dekker's
76 	 * theorem for spitting f-hfsq as hi+lo, unless double_t was used
77 	 * or the multi-precision calculations were avoided when double_t
78 	 * has extra precision.  These problems are now automatically
79 	 * avoided as a side effect of the optimization of combining the
80 	 * Dekker splitting step with the clear-low-bits step.
81 	 *
82 	 * y must (for args near sqrt(2) and 1/sqrt(2)) be added in extra
83 	 * precision to avoid a very large cancellation when x is very near
84 	 * these values.  Unlike the above cancellations, this problem is
85 	 * specific to base 2.  It is strange that adding +-1 is so much
86 	 * harder than adding +-ln2 or +-log10_2.
87 	 *
88 	 * This uses Dekker's theorem to normalize y+val_hi, so the
89 	 * compiler bugs are back in some configurations, sigh.  And I
90 	 * don't want to used double_t to avoid them, since that gives a
91 	 * pessimization and the support for avoiding the pessimization
92 	 * is not yet available.
93 	 *
94 	 * The multi-precision calculations for the multiplications are
95 	 * routine.
96 	 */
97 	hi = f - hfsq;
98 	SET_LOW_WORD(hi,0);
99 	lo = (f - hi) - hfsq + r;
100 	val_hi = hi*ivln2hi;
101 	val_lo = (lo+hi)*ivln2lo + lo*ivln2hi;
102 
103 	/* spadd(val_hi, val_lo, y), except for not using double_t: */
104 	w = y + val_hi;
105 	val_lo += (y - w) + val_hi;
106 	val_hi = w;
107 
108 	return val_lo + val_hi;
109 }
110 
111 #if (LDBL_MANT_DIG == 53)
112 __weak_reference(log2, log2l);
113 #endif
114