xref: /freebsd/lib/msun/src/e_log.c (revision e1e636193db45630c7881246d25902e57c43d24e)
1 
2 /*
3  * ====================================================
4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5  *
6  * Developed at SunSoft, a Sun Microsystems, Inc. business.
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  */
12 
13 /* log(x)
14  * Return the logrithm of x
15  *
16  * Method :
17  *   1. Argument Reduction: find k and f such that
18  *			x = 2^k * (1+f),
19  *	   where  sqrt(2)/2 < 1+f < sqrt(2) .
20  *
21  *   2. Approximation of log(1+f).
22  *	Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
23  *		 = 2s + 2/3 s**3 + 2/5 s**5 + .....,
24  *	     	 = 2s + s*R
25  *      We use a special Reme algorithm on [0,0.1716] to generate
26  * 	a polynomial of degree 14 to approximate R The maximum error
27  *	of this polynomial approximation is bounded by 2**-58.45. In
28  *	other words,
29  *		        2      4      6      8      10      12      14
30  *	    R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s  +Lg6*s  +Lg7*s
31  *  	(the values of Lg1 to Lg7 are listed in the program)
32  *	and
33  *	    |      2          14          |     -58.45
34  *	    | Lg1*s +...+Lg7*s    -  R(z) | <= 2
35  *	    |                             |
36  *	Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
37  *	In order to guarantee error in log below 1ulp, we compute log
38  *	by
39  *		log(1+f) = f - s*(f - R)	(if f is not too large)
40  *		log(1+f) = f - (hfsq - s*(hfsq+R)).	(better accuracy)
41  *
42  *	3. Finally,  log(x) = k*ln2 + log(1+f).
43  *			    = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
44  *	   Here ln2 is split into two floating point number:
45  *			ln2_hi + ln2_lo,
46  *	   where n*ln2_hi is always exact for |n| < 2000.
47  *
48  * Special cases:
49  *	log(x) is NaN with signal if x < 0 (including -INF) ;
50  *	log(+INF) is +INF; log(0) is -INF with signal;
51  *	log(NaN) is that NaN with no signal.
52  *
53  * Accuracy:
54  *	according to an error analysis, the error is always less than
55  *	1 ulp (unit in the last place).
56  *
57  * Constants:
58  * The hexadecimal values are the intended ones for the following
59  * constants. The decimal values may be used, provided that the
60  * compiler will convert from decimal to binary accurately enough
61  * to produce the hexadecimal values shown.
62  */
63 
64 #include <float.h>
65 
66 #include "math.h"
67 #include "math_private.h"
68 
69 static const double
70 ln2_hi  =  6.93147180369123816490e-01,	/* 3fe62e42 fee00000 */
71 ln2_lo  =  1.90821492927058770002e-10,	/* 3dea39ef 35793c76 */
72 two54   =  1.80143985094819840000e+16,  /* 43500000 00000000 */
73 Lg1 = 6.666666666666735130e-01,  /* 3FE55555 55555593 */
74 Lg2 = 3.999999999940941908e-01,  /* 3FD99999 9997FA04 */
75 Lg3 = 2.857142874366239149e-01,  /* 3FD24924 94229359 */
76 Lg4 = 2.222219843214978396e-01,  /* 3FCC71C5 1D8E78AF */
77 Lg5 = 1.818357216161805012e-01,  /* 3FC74664 96CB03DE */
78 Lg6 = 1.531383769920937332e-01,  /* 3FC39A09 D078C69F */
79 Lg7 = 1.479819860511658591e-01;  /* 3FC2F112 DF3E5244 */
80 
81 static const double zero   =  0.0;
82 static volatile double vzero = 0.0;
83 
84 double
85 log(double x)
86 {
87 	double hfsq,f,s,z,R,w,t1,t2,dk;
88 	int32_t k,hx,i,j;
89 	u_int32_t lx;
90 
91 	EXTRACT_WORDS(hx,lx,x);
92 
93 	k=0;
94 	if (hx < 0x00100000) {			/* x < 2**-1022  */
95 	    if (((hx&0x7fffffff)|lx)==0)
96 		return -two54/vzero;		/* log(+-0)=-inf */
97 	    if (hx<0) return (x-x)/zero;	/* log(-#) = NaN */
98 	    k -= 54; x *= two54; /* subnormal number, scale up x */
99 	    GET_HIGH_WORD(hx,x);
100 	}
101 	if (hx >= 0x7ff00000) return x+x;
102 	k += (hx>>20)-1023;
103 	hx &= 0x000fffff;
104 	i = (hx+0x95f64)&0x100000;
105 	SET_HIGH_WORD(x,hx|(i^0x3ff00000));	/* normalize x or x/2 */
106 	k += (i>>20);
107 	f = x-1.0;
108 	if((0x000fffff&(2+hx))<3) {	/* -2**-20 <= f < 2**-20 */
109 	    if(f==zero) {
110 		if(k==0) {
111 		    return zero;
112 		} else {
113 		    dk=(double)k;
114 		    return dk*ln2_hi+dk*ln2_lo;
115 		}
116 	    }
117 	    R = f*f*(0.5-0.33333333333333333*f);
118 	    if(k==0) return f-R; else {dk=(double)k;
119 	    	     return dk*ln2_hi-((R-dk*ln2_lo)-f);}
120 	}
121  	s = f/(2.0+f);
122 	dk = (double)k;
123 	z = s*s;
124 	i = hx-0x6147a;
125 	w = z*z;
126 	j = 0x6b851-hx;
127 	t1= w*(Lg2+w*(Lg4+w*Lg6));
128 	t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
129 	i |= j;
130 	R = t2+t1;
131 	if(i>0) {
132 	    hfsq=0.5*f*f;
133 	    if(k==0) return f-(hfsq-s*(hfsq+R)); else
134 		     return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f);
135 	} else {
136 	    if(k==0) return f-s*(f-R); else
137 		     return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f);
138 	}
139 }
140 
141 #if (LDBL_MANT_DIG == 53)
142 __weak_reference(log, logl);
143 #endif
144