xref: /freebsd/lib/msun/src/e_log.c (revision 6137b5f7b8c183ee8806d79b3f1d8e5e3ddb3df3)
1 
2 /*
3  * ====================================================
4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5  *
6  * Developed at SunSoft, a Sun Microsystems, Inc. business.
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  */
12 
13 #include <sys/cdefs.h>
14 /* log(x)
15  * Return the logrithm of x
16  *
17  * Method :
18  *   1. Argument Reduction: find k and f such that
19  *			x = 2^k * (1+f),
20  *	   where  sqrt(2)/2 < 1+f < sqrt(2) .
21  *
22  *   2. Approximation of log(1+f).
23  *	Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
24  *		 = 2s + 2/3 s**3 + 2/5 s**5 + .....,
25  *	     	 = 2s + s*R
26  *      We use a special Reme algorithm on [0,0.1716] to generate
27  * 	a polynomial of degree 14 to approximate R The maximum error
28  *	of this polynomial approximation is bounded by 2**-58.45. In
29  *	other words,
30  *		        2      4      6      8      10      12      14
31  *	    R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s  +Lg6*s  +Lg7*s
32  *  	(the values of Lg1 to Lg7 are listed in the program)
33  *	and
34  *	    |      2          14          |     -58.45
35  *	    | Lg1*s +...+Lg7*s    -  R(z) | <= 2
36  *	    |                             |
37  *	Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
38  *	In order to guarantee error in log below 1ulp, we compute log
39  *	by
40  *		log(1+f) = f - s*(f - R)	(if f is not too large)
41  *		log(1+f) = f - (hfsq - s*(hfsq+R)).	(better accuracy)
42  *
43  *	3. Finally,  log(x) = k*ln2 + log(1+f).
44  *			    = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
45  *	   Here ln2 is split into two floating point number:
46  *			ln2_hi + ln2_lo,
47  *	   where n*ln2_hi is always exact for |n| < 2000.
48  *
49  * Special cases:
50  *	log(x) is NaN with signal if x < 0 (including -INF) ;
51  *	log(+INF) is +INF; log(0) is -INF with signal;
52  *	log(NaN) is that NaN with no signal.
53  *
54  * Accuracy:
55  *	according to an error analysis, the error is always less than
56  *	1 ulp (unit in the last place).
57  *
58  * Constants:
59  * The hexadecimal values are the intended ones for the following
60  * constants. The decimal values may be used, provided that the
61  * compiler will convert from decimal to binary accurately enough
62  * to produce the hexadecimal values shown.
63  */
64 
65 #include <float.h>
66 
67 #include "math.h"
68 #include "math_private.h"
69 
70 static const double
71 ln2_hi  =  6.93147180369123816490e-01,	/* 3fe62e42 fee00000 */
72 ln2_lo  =  1.90821492927058770002e-10,	/* 3dea39ef 35793c76 */
73 two54   =  1.80143985094819840000e+16,  /* 43500000 00000000 */
74 Lg1 = 6.666666666666735130e-01,  /* 3FE55555 55555593 */
75 Lg2 = 3.999999999940941908e-01,  /* 3FD99999 9997FA04 */
76 Lg3 = 2.857142874366239149e-01,  /* 3FD24924 94229359 */
77 Lg4 = 2.222219843214978396e-01,  /* 3FCC71C5 1D8E78AF */
78 Lg5 = 1.818357216161805012e-01,  /* 3FC74664 96CB03DE */
79 Lg6 = 1.531383769920937332e-01,  /* 3FC39A09 D078C69F */
80 Lg7 = 1.479819860511658591e-01;  /* 3FC2F112 DF3E5244 */
81 
82 static const double zero   =  0.0;
83 static volatile double vzero = 0.0;
84 
85 double
86 log(double x)
87 {
88 	double hfsq,f,s,z,R,w,t1,t2,dk;
89 	int32_t k,hx,i,j;
90 	u_int32_t lx;
91 
92 	EXTRACT_WORDS(hx,lx,x);
93 
94 	k=0;
95 	if (hx < 0x00100000) {			/* x < 2**-1022  */
96 	    if (((hx&0x7fffffff)|lx)==0)
97 		return -two54/vzero;		/* log(+-0)=-inf */
98 	    if (hx<0) return (x-x)/zero;	/* log(-#) = NaN */
99 	    k -= 54; x *= two54; /* subnormal number, scale up x */
100 	    GET_HIGH_WORD(hx,x);
101 	}
102 	if (hx >= 0x7ff00000) return x+x;
103 	k += (hx>>20)-1023;
104 	hx &= 0x000fffff;
105 	i = (hx+0x95f64)&0x100000;
106 	SET_HIGH_WORD(x,hx|(i^0x3ff00000));	/* normalize x or x/2 */
107 	k += (i>>20);
108 	f = x-1.0;
109 	if((0x000fffff&(2+hx))<3) {	/* -2**-20 <= f < 2**-20 */
110 	    if(f==zero) {
111 		if(k==0) {
112 		    return zero;
113 		} else {
114 		    dk=(double)k;
115 		    return dk*ln2_hi+dk*ln2_lo;
116 		}
117 	    }
118 	    R = f*f*(0.5-0.33333333333333333*f);
119 	    if(k==0) return f-R; else {dk=(double)k;
120 	    	     return dk*ln2_hi-((R-dk*ln2_lo)-f);}
121 	}
122  	s = f/(2.0+f);
123 	dk = (double)k;
124 	z = s*s;
125 	i = hx-0x6147a;
126 	w = z*z;
127 	j = 0x6b851-hx;
128 	t1= w*(Lg2+w*(Lg4+w*Lg6));
129 	t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
130 	i |= j;
131 	R = t2+t1;
132 	if(i>0) {
133 	    hfsq=0.5*f*f;
134 	    if(k==0) return f-(hfsq-s*(hfsq+R)); else
135 		     return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f);
136 	} else {
137 	    if(k==0) return f-s*(f-R); else
138 		     return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f);
139 	}
140 }
141 
142 #if (LDBL_MANT_DIG == 53)
143 __weak_reference(log, logl);
144 #endif
145