xref: /freebsd/lib/msun/src/e_log.c (revision 1e413cf93298b5b97441a21d9a50fdcd0ee9945e)
1 
2 /* @(#)e_log.c 1.3 95/01/18 */
3 /*
4  * ====================================================
5  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6  *
7  * Developed at SunSoft, a Sun Microsystems, Inc. business.
8  * Permission to use, copy, modify, and distribute this
9  * software is freely granted, provided that this notice
10  * is preserved.
11  * ====================================================
12  */
13 
14 #ifndef lint
15 static char rcsid[] = "$FreeBSD$";
16 #endif
17 
18 /* __ieee754_log(x)
19  * Return the logrithm of x
20  *
21  * Method :
22  *   1. Argument Reduction: find k and f such that
23  *			x = 2^k * (1+f),
24  *	   where  sqrt(2)/2 < 1+f < sqrt(2) .
25  *
26  *   2. Approximation of log(1+f).
27  *	Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
28  *		 = 2s + 2/3 s**3 + 2/5 s**5 + .....,
29  *	     	 = 2s + s*R
30  *      We use a special Reme algorithm on [0,0.1716] to generate
31  * 	a polynomial of degree 14 to approximate R The maximum error
32  *	of this polynomial approximation is bounded by 2**-58.45. In
33  *	other words,
34  *		        2      4      6      8      10      12      14
35  *	    R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s  +Lg6*s  +Lg7*s
36  *  	(the values of Lg1 to Lg7 are listed in the program)
37  *	and
38  *	    |      2          14          |     -58.45
39  *	    | Lg1*s +...+Lg7*s    -  R(z) | <= 2
40  *	    |                             |
41  *	Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
42  *	In order to guarantee error in log below 1ulp, we compute log
43  *	by
44  *		log(1+f) = f - s*(f - R)	(if f is not too large)
45  *		log(1+f) = f - (hfsq - s*(hfsq+R)).	(better accuracy)
46  *
47  *	3. Finally,  log(x) = k*ln2 + log(1+f).
48  *			    = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
49  *	   Here ln2 is split into two floating point number:
50  *			ln2_hi + ln2_lo,
51  *	   where n*ln2_hi is always exact for |n| < 2000.
52  *
53  * Special cases:
54  *	log(x) is NaN with signal if x < 0 (including -INF) ;
55  *	log(+INF) is +INF; log(0) is -INF with signal;
56  *	log(NaN) is that NaN with no signal.
57  *
58  * Accuracy:
59  *	according to an error analysis, the error is always less than
60  *	1 ulp (unit in the last place).
61  *
62  * Constants:
63  * The hexadecimal values are the intended ones for the following
64  * constants. The decimal values may be used, provided that the
65  * compiler will convert from decimal to binary accurately enough
66  * to produce the hexadecimal values shown.
67  */
68 
69 #include "math.h"
70 #include "math_private.h"
71 
72 static const double
73 ln2_hi  =  6.93147180369123816490e-01,	/* 3fe62e42 fee00000 */
74 ln2_lo  =  1.90821492927058770002e-10,	/* 3dea39ef 35793c76 */
75 two54   =  1.80143985094819840000e+16,  /* 43500000 00000000 */
76 Lg1 = 6.666666666666735130e-01,  /* 3FE55555 55555593 */
77 Lg2 = 3.999999999940941908e-01,  /* 3FD99999 9997FA04 */
78 Lg3 = 2.857142874366239149e-01,  /* 3FD24924 94229359 */
79 Lg4 = 2.222219843214978396e-01,  /* 3FCC71C5 1D8E78AF */
80 Lg5 = 1.818357216161805012e-01,  /* 3FC74664 96CB03DE */
81 Lg6 = 1.531383769920937332e-01,  /* 3FC39A09 D078C69F */
82 Lg7 = 1.479819860511658591e-01;  /* 3FC2F112 DF3E5244 */
83 
84 static const double zero   =  0.0;
85 
86 double
87 __ieee754_log(double x)
88 {
89 	double hfsq,f,s,z,R,w,t1,t2,dk;
90 	int32_t k,hx,i,j;
91 	u_int32_t lx;
92 
93 	EXTRACT_WORDS(hx,lx,x);
94 
95 	k=0;
96 	if (hx < 0x00100000) {			/* x < 2**-1022  */
97 	    if (((hx&0x7fffffff)|lx)==0)
98 		return -two54/zero;		/* log(+-0)=-inf */
99 	    if (hx<0) return (x-x)/zero;	/* log(-#) = NaN */
100 	    k -= 54; x *= two54; /* subnormal number, scale up x */
101 	    GET_HIGH_WORD(hx,x);
102 	}
103 	if (hx >= 0x7ff00000) return x+x;
104 	k += (hx>>20)-1023;
105 	hx &= 0x000fffff;
106 	i = (hx+0x95f64)&0x100000;
107 	SET_HIGH_WORD(x,hx|(i^0x3ff00000));	/* normalize x or x/2 */
108 	k += (i>>20);
109 	f = x-1.0;
110 	if((0x000fffff&(2+hx))<3) {	/* -2**-20 <= f < 2**-20 */
111 	    if(f==zero) if(k==0) return zero;  else {dk=(double)k;
112 				 return dk*ln2_hi+dk*ln2_lo;}
113 	    R = f*f*(0.5-0.33333333333333333*f);
114 	    if(k==0) return f-R; else {dk=(double)k;
115 	    	     return dk*ln2_hi-((R-dk*ln2_lo)-f);}
116 	}
117  	s = f/(2.0+f);
118 	dk = (double)k;
119 	z = s*s;
120 	i = hx-0x6147a;
121 	w = z*z;
122 	j = 0x6b851-hx;
123 	t1= w*(Lg2+w*(Lg4+w*Lg6));
124 	t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
125 	i |= j;
126 	R = t2+t1;
127 	if(i>0) {
128 	    hfsq=0.5*f*f;
129 	    if(k==0) return f-(hfsq-s*(hfsq+R)); else
130 		     return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f);
131 	} else {
132 	    if(k==0) return f-s*(f-R); else
133 		     return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f);
134 	}
135 }
136