13f708241SDavid Schultz 23f708241SDavid Schultz /* @(#)e_log.c 1.3 95/01/18 */ 33a8617a8SJordan K. Hubbard /* 43a8617a8SJordan K. Hubbard * ==================================================== 53a8617a8SJordan K. Hubbard * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. 63a8617a8SJordan K. Hubbard * 73f708241SDavid Schultz * Developed at SunSoft, a Sun Microsystems, Inc. business. 83a8617a8SJordan K. Hubbard * Permission to use, copy, modify, and distribute this 93a8617a8SJordan K. Hubbard * software is freely granted, provided that this notice 103a8617a8SJordan K. Hubbard * is preserved. 113a8617a8SJordan K. Hubbard * ==================================================== 123a8617a8SJordan K. Hubbard */ 133a8617a8SJordan K. Hubbard 143a8617a8SJordan K. Hubbard #ifndef lint 157f3dea24SPeter Wemm static char rcsid[] = "$FreeBSD$"; 163a8617a8SJordan K. Hubbard #endif 173a8617a8SJordan K. Hubbard 183a8617a8SJordan K. Hubbard /* __ieee754_log(x) 193a8617a8SJordan K. Hubbard * Return the logrithm of x 203a8617a8SJordan K. Hubbard * 213a8617a8SJordan K. Hubbard * Method : 223a8617a8SJordan K. Hubbard * 1. Argument Reduction: find k and f such that 233a8617a8SJordan K. Hubbard * x = 2^k * (1+f), 243a8617a8SJordan K. Hubbard * where sqrt(2)/2 < 1+f < sqrt(2) . 253a8617a8SJordan K. Hubbard * 263a8617a8SJordan K. Hubbard * 2. Approximation of log(1+f). 273a8617a8SJordan K. Hubbard * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) 283a8617a8SJordan K. Hubbard * = 2s + 2/3 s**3 + 2/5 s**5 + ....., 293a8617a8SJordan K. Hubbard * = 2s + s*R 303a8617a8SJordan K. Hubbard * We use a special Reme algorithm on [0,0.1716] to generate 313a8617a8SJordan K. Hubbard * a polynomial of degree 14 to approximate R The maximum error 323a8617a8SJordan K. Hubbard * of this polynomial approximation is bounded by 2**-58.45. In 333a8617a8SJordan K. Hubbard * other words, 343a8617a8SJordan K. Hubbard * 2 4 6 8 10 12 14 353a8617a8SJordan K. Hubbard * R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s 363a8617a8SJordan K. Hubbard * (the values of Lg1 to Lg7 are listed in the program) 373a8617a8SJordan K. Hubbard * and 383a8617a8SJordan K. Hubbard * | 2 14 | -58.45 393a8617a8SJordan K. Hubbard * | Lg1*s +...+Lg7*s - R(z) | <= 2 403a8617a8SJordan K. Hubbard * | | 413a8617a8SJordan K. Hubbard * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2. 423a8617a8SJordan K. Hubbard * In order to guarantee error in log below 1ulp, we compute log 433a8617a8SJordan K. Hubbard * by 443a8617a8SJordan K. Hubbard * log(1+f) = f - s*(f - R) (if f is not too large) 453a8617a8SJordan K. Hubbard * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy) 463a8617a8SJordan K. Hubbard * 473a8617a8SJordan K. Hubbard * 3. Finally, log(x) = k*ln2 + log(1+f). 483a8617a8SJordan K. Hubbard * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo))) 493a8617a8SJordan K. Hubbard * Here ln2 is split into two floating point number: 503a8617a8SJordan K. Hubbard * ln2_hi + ln2_lo, 513a8617a8SJordan K. Hubbard * where n*ln2_hi is always exact for |n| < 2000. 523a8617a8SJordan K. Hubbard * 533a8617a8SJordan K. Hubbard * Special cases: 543a8617a8SJordan K. Hubbard * log(x) is NaN with signal if x < 0 (including -INF) ; 553a8617a8SJordan K. Hubbard * log(+INF) is +INF; log(0) is -INF with signal; 563a8617a8SJordan K. Hubbard * log(NaN) is that NaN with no signal. 573a8617a8SJordan K. Hubbard * 583a8617a8SJordan K. Hubbard * Accuracy: 593a8617a8SJordan K. Hubbard * according to an error analysis, the error is always less than 603a8617a8SJordan K. Hubbard * 1 ulp (unit in the last place). 613a8617a8SJordan K. Hubbard * 623a8617a8SJordan K. Hubbard * Constants: 633a8617a8SJordan K. Hubbard * The hexadecimal values are the intended ones for the following 643a8617a8SJordan K. Hubbard * constants. The decimal values may be used, provided that the 653a8617a8SJordan K. Hubbard * compiler will convert from decimal to binary accurately enough 663a8617a8SJordan K. Hubbard * to produce the hexadecimal values shown. 673a8617a8SJordan K. Hubbard */ 683a8617a8SJordan K. Hubbard 693a8617a8SJordan K. Hubbard #include "math.h" 703a8617a8SJordan K. Hubbard #include "math_private.h" 713a8617a8SJordan K. Hubbard 723a8617a8SJordan K. Hubbard static const double 733a8617a8SJordan K. Hubbard ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */ 743a8617a8SJordan K. Hubbard ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */ 753a8617a8SJordan K. Hubbard two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */ 763a8617a8SJordan K. Hubbard Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */ 773a8617a8SJordan K. Hubbard Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */ 783a8617a8SJordan K. Hubbard Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */ 793a8617a8SJordan K. Hubbard Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */ 803a8617a8SJordan K. Hubbard Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */ 813a8617a8SJordan K. Hubbard Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */ 823a8617a8SJordan K. Hubbard Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */ 833a8617a8SJordan K. Hubbard 843a8617a8SJordan K. Hubbard static const double zero = 0.0; 853a8617a8SJordan K. Hubbard 8659b19ff1SAlfred Perlstein double 873819e840SPeter Wemm __ieee754_log(double x) 883a8617a8SJordan K. Hubbard { 893a8617a8SJordan K. Hubbard double hfsq,f,s,z,R,w,t1,t2,dk; 903a8617a8SJordan K. Hubbard int32_t k,hx,i,j; 913a8617a8SJordan K. Hubbard u_int32_t lx; 923a8617a8SJordan K. Hubbard 933a8617a8SJordan K. Hubbard EXTRACT_WORDS(hx,lx,x); 943a8617a8SJordan K. Hubbard 953a8617a8SJordan K. Hubbard k=0; 963a8617a8SJordan K. Hubbard if (hx < 0x00100000) { /* x < 2**-1022 */ 973a8617a8SJordan K. Hubbard if (((hx&0x7fffffff)|lx)==0) 983a8617a8SJordan K. Hubbard return -two54/zero; /* log(+-0)=-inf */ 993a8617a8SJordan K. Hubbard if (hx<0) return (x-x)/zero; /* log(-#) = NaN */ 1003a8617a8SJordan K. Hubbard k -= 54; x *= two54; /* subnormal number, scale up x */ 1013a8617a8SJordan K. Hubbard GET_HIGH_WORD(hx,x); 1023a8617a8SJordan K. Hubbard } 1033a8617a8SJordan K. Hubbard if (hx >= 0x7ff00000) return x+x; 1043a8617a8SJordan K. Hubbard k += (hx>>20)-1023; 1053a8617a8SJordan K. Hubbard hx &= 0x000fffff; 1063a8617a8SJordan K. Hubbard i = (hx+0x95f64)&0x100000; 1073a8617a8SJordan K. Hubbard SET_HIGH_WORD(x,hx|(i^0x3ff00000)); /* normalize x or x/2 */ 1083a8617a8SJordan K. Hubbard k += (i>>20); 1093a8617a8SJordan K. Hubbard f = x-1.0; 110b5e547dfSBruce Evans if((0x000fffff&(2+hx))<3) { /* -2**-20 <= f < 2**-20 */ 1113a8617a8SJordan K. Hubbard if(f==zero) if(k==0) return zero; else {dk=(double)k; 1123a8617a8SJordan K. Hubbard return dk*ln2_hi+dk*ln2_lo;} 1133a8617a8SJordan K. Hubbard R = f*f*(0.5-0.33333333333333333*f); 1143a8617a8SJordan K. Hubbard if(k==0) return f-R; else {dk=(double)k; 1153a8617a8SJordan K. Hubbard return dk*ln2_hi-((R-dk*ln2_lo)-f);} 1163a8617a8SJordan K. Hubbard } 1173a8617a8SJordan K. Hubbard s = f/(2.0+f); 1183a8617a8SJordan K. Hubbard dk = (double)k; 1193a8617a8SJordan K. Hubbard z = s*s; 1203a8617a8SJordan K. Hubbard i = hx-0x6147a; 1213a8617a8SJordan K. Hubbard w = z*z; 1223a8617a8SJordan K. Hubbard j = 0x6b851-hx; 1233a8617a8SJordan K. Hubbard t1= w*(Lg2+w*(Lg4+w*Lg6)); 1243a8617a8SJordan K. Hubbard t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7))); 1253a8617a8SJordan K. Hubbard i |= j; 1263a8617a8SJordan K. Hubbard R = t2+t1; 1273a8617a8SJordan K. Hubbard if(i>0) { 1283a8617a8SJordan K. Hubbard hfsq=0.5*f*f; 1293a8617a8SJordan K. Hubbard if(k==0) return f-(hfsq-s*(hfsq+R)); else 1303a8617a8SJordan K. Hubbard return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f); 1313a8617a8SJordan K. Hubbard } else { 1323a8617a8SJordan K. Hubbard if(k==0) return f-s*(f-R); else 1333a8617a8SJordan K. Hubbard return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f); 1343a8617a8SJordan K. Hubbard } 1353a8617a8SJordan K. Hubbard } 136