13f708241SDavid Schultz
23a8617a8SJordan K. Hubbard /*
33a8617a8SJordan K. Hubbard * ====================================================
43a8617a8SJordan K. Hubbard * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
53a8617a8SJordan K. Hubbard *
63f708241SDavid Schultz * Developed at SunSoft, a Sun Microsystems, Inc. business.
73a8617a8SJordan K. Hubbard * Permission to use, copy, modify, and distribute this
83a8617a8SJordan K. Hubbard * software is freely granted, provided that this notice
93a8617a8SJordan K. Hubbard * is preserved.
103a8617a8SJordan K. Hubbard * ====================================================
113a8617a8SJordan K. Hubbard */
123a8617a8SJordan K. Hubbard
13*99843eb8SSteve Kargl /* log(x)
143a8617a8SJordan K. Hubbard * Return the logrithm of x
153a8617a8SJordan K. Hubbard *
163a8617a8SJordan K. Hubbard * Method :
173a8617a8SJordan K. Hubbard * 1. Argument Reduction: find k and f such that
183a8617a8SJordan K. Hubbard * x = 2^k * (1+f),
193a8617a8SJordan K. Hubbard * where sqrt(2)/2 < 1+f < sqrt(2) .
203a8617a8SJordan K. Hubbard *
213a8617a8SJordan K. Hubbard * 2. Approximation of log(1+f).
223a8617a8SJordan K. Hubbard * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
233a8617a8SJordan K. Hubbard * = 2s + 2/3 s**3 + 2/5 s**5 + .....,
243a8617a8SJordan K. Hubbard * = 2s + s*R
253a8617a8SJordan K. Hubbard * We use a special Reme algorithm on [0,0.1716] to generate
263a8617a8SJordan K. Hubbard * a polynomial of degree 14 to approximate R The maximum error
273a8617a8SJordan K. Hubbard * of this polynomial approximation is bounded by 2**-58.45. In
283a8617a8SJordan K. Hubbard * other words,
293a8617a8SJordan K. Hubbard * 2 4 6 8 10 12 14
303a8617a8SJordan K. Hubbard * R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s
313a8617a8SJordan K. Hubbard * (the values of Lg1 to Lg7 are listed in the program)
323a8617a8SJordan K. Hubbard * and
333a8617a8SJordan K. Hubbard * | 2 14 | -58.45
343a8617a8SJordan K. Hubbard * | Lg1*s +...+Lg7*s - R(z) | <= 2
353a8617a8SJordan K. Hubbard * | |
363a8617a8SJordan K. Hubbard * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
373a8617a8SJordan K. Hubbard * In order to guarantee error in log below 1ulp, we compute log
383a8617a8SJordan K. Hubbard * by
393a8617a8SJordan K. Hubbard * log(1+f) = f - s*(f - R) (if f is not too large)
403a8617a8SJordan K. Hubbard * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)
413a8617a8SJordan K. Hubbard *
423a8617a8SJordan K. Hubbard * 3. Finally, log(x) = k*ln2 + log(1+f).
433a8617a8SJordan K. Hubbard * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
443a8617a8SJordan K. Hubbard * Here ln2 is split into two floating point number:
453a8617a8SJordan K. Hubbard * ln2_hi + ln2_lo,
463a8617a8SJordan K. Hubbard * where n*ln2_hi is always exact for |n| < 2000.
473a8617a8SJordan K. Hubbard *
483a8617a8SJordan K. Hubbard * Special cases:
493a8617a8SJordan K. Hubbard * log(x) is NaN with signal if x < 0 (including -INF) ;
503a8617a8SJordan K. Hubbard * log(+INF) is +INF; log(0) is -INF with signal;
513a8617a8SJordan K. Hubbard * log(NaN) is that NaN with no signal.
523a8617a8SJordan K. Hubbard *
533a8617a8SJordan K. Hubbard * Accuracy:
543a8617a8SJordan K. Hubbard * according to an error analysis, the error is always less than
553a8617a8SJordan K. Hubbard * 1 ulp (unit in the last place).
563a8617a8SJordan K. Hubbard *
573a8617a8SJordan K. Hubbard * Constants:
583a8617a8SJordan K. Hubbard * The hexadecimal values are the intended ones for the following
593a8617a8SJordan K. Hubbard * constants. The decimal values may be used, provided that the
603a8617a8SJordan K. Hubbard * compiler will convert from decimal to binary accurately enough
613a8617a8SJordan K. Hubbard * to produce the hexadecimal values shown.
623a8617a8SJordan K. Hubbard */
633a8617a8SJordan K. Hubbard
6425a4d6bfSDavid Schultz #include <float.h>
6525a4d6bfSDavid Schultz
663a8617a8SJordan K. Hubbard #include "math.h"
673a8617a8SJordan K. Hubbard #include "math_private.h"
683a8617a8SJordan K. Hubbard
693a8617a8SJordan K. Hubbard static const double
703a8617a8SJordan K. Hubbard ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */
713a8617a8SJordan K. Hubbard ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */
723a8617a8SJordan K. Hubbard two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */
733a8617a8SJordan K. Hubbard Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */
743a8617a8SJordan K. Hubbard Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
753a8617a8SJordan K. Hubbard Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */
763a8617a8SJordan K. Hubbard Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
773a8617a8SJordan K. Hubbard Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
783a8617a8SJordan K. Hubbard Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
793a8617a8SJordan K. Hubbard Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
803a8617a8SJordan K. Hubbard
813a8617a8SJordan K. Hubbard static const double zero = 0.0;
827dbbb6ddSDavid Schultz static volatile double vzero = 0.0;
833a8617a8SJordan K. Hubbard
8459b19ff1SAlfred Perlstein double
log(double x)85*99843eb8SSteve Kargl log(double x)
863a8617a8SJordan K. Hubbard {
873a8617a8SJordan K. Hubbard double hfsq,f,s,z,R,w,t1,t2,dk;
883a8617a8SJordan K. Hubbard int32_t k,hx,i,j;
893a8617a8SJordan K. Hubbard u_int32_t lx;
903a8617a8SJordan K. Hubbard
913a8617a8SJordan K. Hubbard EXTRACT_WORDS(hx,lx,x);
923a8617a8SJordan K. Hubbard
933a8617a8SJordan K. Hubbard k=0;
943a8617a8SJordan K. Hubbard if (hx < 0x00100000) { /* x < 2**-1022 */
953a8617a8SJordan K. Hubbard if (((hx&0x7fffffff)|lx)==0)
967dbbb6ddSDavid Schultz return -two54/vzero; /* log(+-0)=-inf */
973a8617a8SJordan K. Hubbard if (hx<0) return (x-x)/zero; /* log(-#) = NaN */
983a8617a8SJordan K. Hubbard k -= 54; x *= two54; /* subnormal number, scale up x */
993a8617a8SJordan K. Hubbard GET_HIGH_WORD(hx,x);
1003a8617a8SJordan K. Hubbard }
1013a8617a8SJordan K. Hubbard if (hx >= 0x7ff00000) return x+x;
1023a8617a8SJordan K. Hubbard k += (hx>>20)-1023;
1033a8617a8SJordan K. Hubbard hx &= 0x000fffff;
1043a8617a8SJordan K. Hubbard i = (hx+0x95f64)&0x100000;
1053a8617a8SJordan K. Hubbard SET_HIGH_WORD(x,hx|(i^0x3ff00000)); /* normalize x or x/2 */
1063a8617a8SJordan K. Hubbard k += (i>>20);
1073a8617a8SJordan K. Hubbard f = x-1.0;
108b5e547dfSBruce Evans if((0x000fffff&(2+hx))<3) { /* -2**-20 <= f < 2**-20 */
109ee0730e6SDavid Schultz if(f==zero) {
110ee0730e6SDavid Schultz if(k==0) {
111ee0730e6SDavid Schultz return zero;
112ee0730e6SDavid Schultz } else {
113ee0730e6SDavid Schultz dk=(double)k;
114ee0730e6SDavid Schultz return dk*ln2_hi+dk*ln2_lo;
115ee0730e6SDavid Schultz }
116ee0730e6SDavid Schultz }
1173a8617a8SJordan K. Hubbard R = f*f*(0.5-0.33333333333333333*f);
1183a8617a8SJordan K. Hubbard if(k==0) return f-R; else {dk=(double)k;
1193a8617a8SJordan K. Hubbard return dk*ln2_hi-((R-dk*ln2_lo)-f);}
1203a8617a8SJordan K. Hubbard }
1213a8617a8SJordan K. Hubbard s = f/(2.0+f);
1223a8617a8SJordan K. Hubbard dk = (double)k;
1233a8617a8SJordan K. Hubbard z = s*s;
1243a8617a8SJordan K. Hubbard i = hx-0x6147a;
1253a8617a8SJordan K. Hubbard w = z*z;
1263a8617a8SJordan K. Hubbard j = 0x6b851-hx;
1273a8617a8SJordan K. Hubbard t1= w*(Lg2+w*(Lg4+w*Lg6));
1283a8617a8SJordan K. Hubbard t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
1293a8617a8SJordan K. Hubbard i |= j;
1303a8617a8SJordan K. Hubbard R = t2+t1;
1313a8617a8SJordan K. Hubbard if(i>0) {
1323a8617a8SJordan K. Hubbard hfsq=0.5*f*f;
1333a8617a8SJordan K. Hubbard if(k==0) return f-(hfsq-s*(hfsq+R)); else
1343a8617a8SJordan K. Hubbard return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f);
1353a8617a8SJordan K. Hubbard } else {
1363a8617a8SJordan K. Hubbard if(k==0) return f-s*(f-R); else
1373a8617a8SJordan K. Hubbard return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f);
1383a8617a8SJordan K. Hubbard }
1393a8617a8SJordan K. Hubbard }
14025a4d6bfSDavid Schultz
14125a4d6bfSDavid Schultz #if (LDBL_MANT_DIG == 53)
14225a4d6bfSDavid Schultz __weak_reference(log, logl);
14325a4d6bfSDavid Schultz #endif
144