13a8617a8SJordan K. Hubbard /*
23a8617a8SJordan K. Hubbard * ====================================================
33a8617a8SJordan K. Hubbard * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
43a8617a8SJordan K. Hubbard *
53f708241SDavid Schultz * Developed at SunSoft, a Sun Microsystems, Inc. business.
63a8617a8SJordan K. Hubbard * Permission to use, copy, modify, and distribute this
73a8617a8SJordan K. Hubbard * software is freely granted, provided that this notice
83a8617a8SJordan K. Hubbard * is preserved.
93a8617a8SJordan K. Hubbard * ====================================================
103a8617a8SJordan K. Hubbard */
113a8617a8SJordan K. Hubbard
12*99843eb8SSteve Kargl /* lgamma_r(x, signgamp)
133a8617a8SJordan K. Hubbard * Reentrant version of the logarithm of the Gamma function
143a8617a8SJordan K. Hubbard * with user provide pointer for the sign of Gamma(x).
153a8617a8SJordan K. Hubbard *
163a8617a8SJordan K. Hubbard * Method:
173a8617a8SJordan K. Hubbard * 1. Argument Reduction for 0 < x <= 8
183a8617a8SJordan K. Hubbard * Since gamma(1+s)=s*gamma(s), for x in [0,8], we may
193a8617a8SJordan K. Hubbard * reduce x to a number in [1.5,2.5] by
203a8617a8SJordan K. Hubbard * lgamma(1+s) = log(s) + lgamma(s)
213a8617a8SJordan K. Hubbard * for example,
223a8617a8SJordan K. Hubbard * lgamma(7.3) = log(6.3) + lgamma(6.3)
233a8617a8SJordan K. Hubbard * = log(6.3*5.3) + lgamma(5.3)
243a8617a8SJordan K. Hubbard * = log(6.3*5.3*4.3*3.3*2.3) + lgamma(2.3)
253a8617a8SJordan K. Hubbard * 2. Polynomial approximation of lgamma around its
26a52f4499SGordon Bergling * minimum ymin=1.461632144968362245 to maintain monotonicity.
273a8617a8SJordan K. Hubbard * On [ymin-0.23, ymin+0.27] (i.e., [1.23164,1.73163]), use
283a8617a8SJordan K. Hubbard * Let z = x-ymin;
293a8617a8SJordan K. Hubbard * lgamma(x) = -1.214862905358496078218 + z^2*poly(z)
303a8617a8SJordan K. Hubbard * where
313a8617a8SJordan K. Hubbard * poly(z) is a 14 degree polynomial.
323a8617a8SJordan K. Hubbard * 2. Rational approximation in the primary interval [2,3]
333a8617a8SJordan K. Hubbard * We use the following approximation:
343a8617a8SJordan K. Hubbard * s = x-2.0;
353a8617a8SJordan K. Hubbard * lgamma(x) = 0.5*s + s*P(s)/Q(s)
363a8617a8SJordan K. Hubbard * with accuracy
373a8617a8SJordan K. Hubbard * |P/Q - (lgamma(x)-0.5s)| < 2**-61.71
383a8617a8SJordan K. Hubbard * Our algorithms are based on the following observation
393a8617a8SJordan K. Hubbard *
403a8617a8SJordan K. Hubbard * zeta(2)-1 2 zeta(3)-1 3
413a8617a8SJordan K. Hubbard * lgamma(2+s) = s*(1-Euler) + --------- * s - --------- * s + ...
423a8617a8SJordan K. Hubbard * 2 3
433a8617a8SJordan K. Hubbard *
443a8617a8SJordan K. Hubbard * where Euler = 0.5771... is the Euler constant, which is very
453a8617a8SJordan K. Hubbard * close to 0.5.
463a8617a8SJordan K. Hubbard *
473a8617a8SJordan K. Hubbard * 3. For x>=8, we have
483a8617a8SJordan K. Hubbard * lgamma(x)~(x-0.5)log(x)-x+0.5*log(2pi)+1/(12x)-1/(360x**3)+....
493a8617a8SJordan K. Hubbard * (better formula:
503a8617a8SJordan K. Hubbard * lgamma(x)~(x-0.5)*(log(x)-1)-.5*(log(2pi)-1) + ...)
513a8617a8SJordan K. Hubbard * Let z = 1/x, then we approximation
523a8617a8SJordan K. Hubbard * f(z) = lgamma(x) - (x-0.5)(log(x)-1)
533a8617a8SJordan K. Hubbard * by
543a8617a8SJordan K. Hubbard * 3 5 11
553a8617a8SJordan K. Hubbard * w = w0 + w1*z + w2*z + w3*z + ... + w6*z
563a8617a8SJordan K. Hubbard * where
573a8617a8SJordan K. Hubbard * |w - f(z)| < 2**-58.74
583a8617a8SJordan K. Hubbard *
593a8617a8SJordan K. Hubbard * 4. For negative x, since (G is gamma function)
603a8617a8SJordan K. Hubbard * -x*G(-x)*G(x) = pi/sin(pi*x),
613a8617a8SJordan K. Hubbard * we have
623a8617a8SJordan K. Hubbard * G(x) = pi/(sin(pi*x)*(-x)*G(-x))
633a8617a8SJordan K. Hubbard * since G(-x) is positive, sign(G(x)) = sign(sin(pi*x)) for x<0
643a8617a8SJordan K. Hubbard * Hence, for x<0, signgam = sign(sin(pi*x)) and
653a8617a8SJordan K. Hubbard * lgamma(x) = log(|Gamma(x)|)
663a8617a8SJordan K. Hubbard * = log(pi/(|x*sin(pi*x)|)) - lgamma(-x);
673a8617a8SJordan K. Hubbard * Note: one should avoid compute pi*(-x) directly in the
683a8617a8SJordan K. Hubbard * computation of sin(pi*(-x)).
693a8617a8SJordan K. Hubbard *
703a8617a8SJordan K. Hubbard * 5. Special Cases
713a8617a8SJordan K. Hubbard * lgamma(2+s) ~ s*(1-Euler) for tiny s
723a8617a8SJordan K. Hubbard * lgamma(1) = lgamma(2) = 0
739698b3b5SBruce Evans * lgamma(x) ~ -log(|x|) for tiny x
749698b3b5SBruce Evans * lgamma(0) = lgamma(neg.integer) = inf and raise divide-by-zero
759698b3b5SBruce Evans * lgamma(inf) = inf
769698b3b5SBruce Evans * lgamma(-inf) = inf (bug for bug compatible with C99!?)
773a8617a8SJordan K. Hubbard */
783a8617a8SJordan K. Hubbard
79f7efd14dSSteve Kargl #include <float.h>
80f7efd14dSSteve Kargl
813a8617a8SJordan K. Hubbard #include "math.h"
823a8617a8SJordan K. Hubbard #include "math_private.h"
833a8617a8SJordan K. Hubbard
8473333154SSteve Kargl static const volatile double vzero = 0;
8573333154SSteve Kargl
863a8617a8SJordan K. Hubbard static const double
8773333154SSteve Kargl zero= 0.00000000000000000000e+00,
883a8617a8SJordan K. Hubbard half= 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
893a8617a8SJordan K. Hubbard one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
903a8617a8SJordan K. Hubbard pi = 3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */
913a8617a8SJordan K. Hubbard a0 = 7.72156649015328655494e-02, /* 0x3FB3C467, 0xE37DB0C8 */
923a8617a8SJordan K. Hubbard a1 = 3.22467033424113591611e-01, /* 0x3FD4A34C, 0xC4A60FAD */
933a8617a8SJordan K. Hubbard a2 = 6.73523010531292681824e-02, /* 0x3FB13E00, 0x1A5562A7 */
943a8617a8SJordan K. Hubbard a3 = 2.05808084325167332806e-02, /* 0x3F951322, 0xAC92547B */
953a8617a8SJordan K. Hubbard a4 = 7.38555086081402883957e-03, /* 0x3F7E404F, 0xB68FEFE8 */
963a8617a8SJordan K. Hubbard a5 = 2.89051383673415629091e-03, /* 0x3F67ADD8, 0xCCB7926B */
973a8617a8SJordan K. Hubbard a6 = 1.19270763183362067845e-03, /* 0x3F538A94, 0x116F3F5D */
983a8617a8SJordan K. Hubbard a7 = 5.10069792153511336608e-04, /* 0x3F40B6C6, 0x89B99C00 */
993a8617a8SJordan K. Hubbard a8 = 2.20862790713908385557e-04, /* 0x3F2CF2EC, 0xED10E54D */
1003a8617a8SJordan K. Hubbard a9 = 1.08011567247583939954e-04, /* 0x3F1C5088, 0x987DFB07 */
1013a8617a8SJordan K. Hubbard a10 = 2.52144565451257326939e-05, /* 0x3EFA7074, 0x428CFA52 */
1023a8617a8SJordan K. Hubbard a11 = 4.48640949618915160150e-05, /* 0x3F07858E, 0x90A45837 */
1033a8617a8SJordan K. Hubbard tc = 1.46163214496836224576e+00, /* 0x3FF762D8, 0x6356BE3F */
1043a8617a8SJordan K. Hubbard tf = -1.21486290535849611461e-01, /* 0xBFBF19B9, 0xBCC38A42 */
1053a8617a8SJordan K. Hubbard /* tt = -(tail of tf) */
1063a8617a8SJordan K. Hubbard tt = -3.63867699703950536541e-18, /* 0xBC50C7CA, 0xA48A971F */
1073a8617a8SJordan K. Hubbard t0 = 4.83836122723810047042e-01, /* 0x3FDEF72B, 0xC8EE38A2 */
1083a8617a8SJordan K. Hubbard t1 = -1.47587722994593911752e-01, /* 0xBFC2E427, 0x8DC6C509 */
1093a8617a8SJordan K. Hubbard t2 = 6.46249402391333854778e-02, /* 0x3FB08B42, 0x94D5419B */
1103a8617a8SJordan K. Hubbard t3 = -3.27885410759859649565e-02, /* 0xBFA0C9A8, 0xDF35B713 */
1113a8617a8SJordan K. Hubbard t4 = 1.79706750811820387126e-02, /* 0x3F9266E7, 0x970AF9EC */
1123a8617a8SJordan K. Hubbard t5 = -1.03142241298341437450e-02, /* 0xBF851F9F, 0xBA91EC6A */
1133a8617a8SJordan K. Hubbard t6 = 6.10053870246291332635e-03, /* 0x3F78FCE0, 0xE370E344 */
1143a8617a8SJordan K. Hubbard t7 = -3.68452016781138256760e-03, /* 0xBF6E2EFF, 0xB3E914D7 */
1153a8617a8SJordan K. Hubbard t8 = 2.25964780900612472250e-03, /* 0x3F6282D3, 0x2E15C915 */
1163a8617a8SJordan K. Hubbard t9 = -1.40346469989232843813e-03, /* 0xBF56FE8E, 0xBF2D1AF1 */
1173a8617a8SJordan K. Hubbard t10 = 8.81081882437654011382e-04, /* 0x3F4CDF0C, 0xEF61A8E9 */
1183a8617a8SJordan K. Hubbard t11 = -5.38595305356740546715e-04, /* 0xBF41A610, 0x9C73E0EC */
1193a8617a8SJordan K. Hubbard t12 = 3.15632070903625950361e-04, /* 0x3F34AF6D, 0x6C0EBBF7 */
1203a8617a8SJordan K. Hubbard t13 = -3.12754168375120860518e-04, /* 0xBF347F24, 0xECC38C38 */
1213a8617a8SJordan K. Hubbard t14 = 3.35529192635519073543e-04, /* 0x3F35FD3E, 0xE8C2D3F4 */
1223a8617a8SJordan K. Hubbard u0 = -7.72156649015328655494e-02, /* 0xBFB3C467, 0xE37DB0C8 */
1233a8617a8SJordan K. Hubbard u1 = 6.32827064025093366517e-01, /* 0x3FE4401E, 0x8B005DFF */
1243a8617a8SJordan K. Hubbard u2 = 1.45492250137234768737e+00, /* 0x3FF7475C, 0xD119BD6F */
1253a8617a8SJordan K. Hubbard u3 = 9.77717527963372745603e-01, /* 0x3FEF4976, 0x44EA8450 */
1263a8617a8SJordan K. Hubbard u4 = 2.28963728064692451092e-01, /* 0x3FCD4EAE, 0xF6010924 */
1273a8617a8SJordan K. Hubbard u5 = 1.33810918536787660377e-02, /* 0x3F8B678B, 0xBF2BAB09 */
1283a8617a8SJordan K. Hubbard v1 = 2.45597793713041134822e+00, /* 0x4003A5D7, 0xC2BD619C */
1293a8617a8SJordan K. Hubbard v2 = 2.12848976379893395361e+00, /* 0x40010725, 0xA42B18F5 */
1303a8617a8SJordan K. Hubbard v3 = 7.69285150456672783825e-01, /* 0x3FE89DFB, 0xE45050AF */
1313a8617a8SJordan K. Hubbard v4 = 1.04222645593369134254e-01, /* 0x3FBAAE55, 0xD6537C88 */
1323a8617a8SJordan K. Hubbard v5 = 3.21709242282423911810e-03, /* 0x3F6A5ABB, 0x57D0CF61 */
1333a8617a8SJordan K. Hubbard s0 = -7.72156649015328655494e-02, /* 0xBFB3C467, 0xE37DB0C8 */
1343a8617a8SJordan K. Hubbard s1 = 2.14982415960608852501e-01, /* 0x3FCB848B, 0x36E20878 */
1353a8617a8SJordan K. Hubbard s2 = 3.25778796408930981787e-01, /* 0x3FD4D98F, 0x4F139F59 */
1363a8617a8SJordan K. Hubbard s3 = 1.46350472652464452805e-01, /* 0x3FC2BB9C, 0xBEE5F2F7 */
1373a8617a8SJordan K. Hubbard s4 = 2.66422703033638609560e-02, /* 0x3F9B481C, 0x7E939961 */
1383a8617a8SJordan K. Hubbard s5 = 1.84028451407337715652e-03, /* 0x3F5E26B6, 0x7368F239 */
1393a8617a8SJordan K. Hubbard s6 = 3.19475326584100867617e-05, /* 0x3F00BFEC, 0xDD17E945 */
1403a8617a8SJordan K. Hubbard r1 = 1.39200533467621045958e+00, /* 0x3FF645A7, 0x62C4AB74 */
1413a8617a8SJordan K. Hubbard r2 = 7.21935547567138069525e-01, /* 0x3FE71A18, 0x93D3DCDC */
1423a8617a8SJordan K. Hubbard r3 = 1.71933865632803078993e-01, /* 0x3FC601ED, 0xCCFBDF27 */
1433a8617a8SJordan K. Hubbard r4 = 1.86459191715652901344e-02, /* 0x3F9317EA, 0x742ED475 */
1443a8617a8SJordan K. Hubbard r5 = 7.77942496381893596434e-04, /* 0x3F497DDA, 0xCA41A95B */
1453a8617a8SJordan K. Hubbard r6 = 7.32668430744625636189e-06, /* 0x3EDEBAF7, 0xA5B38140 */
1463a8617a8SJordan K. Hubbard w0 = 4.18938533204672725052e-01, /* 0x3FDACFE3, 0x90C97D69 */
1473a8617a8SJordan K. Hubbard w1 = 8.33333333333329678849e-02, /* 0x3FB55555, 0x5555553B */
1483a8617a8SJordan K. Hubbard w2 = -2.77777777728775536470e-03, /* 0xBF66C16C, 0x16B02E5C */
1493a8617a8SJordan K. Hubbard w3 = 7.93650558643019558500e-04, /* 0x3F4A019F, 0x98CF38B6 */
1503a8617a8SJordan K. Hubbard w4 = -5.95187557450339963135e-04, /* 0xBF4380CB, 0x8C0FE741 */
1513a8617a8SJordan K. Hubbard w5 = 8.36339918996282139126e-04, /* 0x3F4B67BA, 0x4CDAD5D1 */
1523a8617a8SJordan K. Hubbard w6 = -1.63092934096575273989e-03; /* 0xBF5AB89D, 0x0B9E43E4 */
1533a8617a8SJordan K. Hubbard
1543a8617a8SJordan K. Hubbard /*
155795b9204SSteve Kargl * Compute sin(pi*x) without actually doing the pi*x multiplication.
156795b9204SSteve Kargl * sin_pi(x) is only called for x < 0 and |x| < 2**(p-1) where p is
157795b9204SSteve Kargl * the precision of x.
1583a8617a8SJordan K. Hubbard */
159795b9204SSteve Kargl static double
sin_pi(double x)160795b9204SSteve Kargl sin_pi(double x)
161795b9204SSteve Kargl {
162795b9204SSteve Kargl volatile double vz;
163795b9204SSteve Kargl double y,z;
164795b9204SSteve Kargl int n;
165795b9204SSteve Kargl
166795b9204SSteve Kargl y = -x;
167795b9204SSteve Kargl
168795b9204SSteve Kargl vz = y+0x1p52; /* depend on 0 <= y < 0x1p52 */
169795b9204SSteve Kargl z = vz-0x1p52; /* rint(y) for the above range */
170795b9204SSteve Kargl if (z == y)
171e63062b5SSteve Kargl return zero;
172795b9204SSteve Kargl
173795b9204SSteve Kargl vz = y+0x1p50;
174795b9204SSteve Kargl GET_LOW_WORD(n,vz); /* bits for rounded y (units 0.25) */
175795b9204SSteve Kargl z = vz-0x1p50; /* y rounded to a multiple of 0.25 */
176795b9204SSteve Kargl if (z > y) {
177795b9204SSteve Kargl z -= 0.25; /* adjust to round down */
178795b9204SSteve Kargl n--;
1793a8617a8SJordan K. Hubbard }
180795b9204SSteve Kargl n &= 7; /* octant of y mod 2 */
181795b9204SSteve Kargl y = y - z + n * 0.25; /* y mod 2 */
182795b9204SSteve Kargl
1833a8617a8SJordan K. Hubbard switch (n) {
1843a8617a8SJordan K. Hubbard case 0: y = __kernel_sin(pi*y,zero,0); break;
1853a8617a8SJordan K. Hubbard case 1:
1863a8617a8SJordan K. Hubbard case 2: y = __kernel_cos(pi*(0.5-y),zero); break;
1873a8617a8SJordan K. Hubbard case 3:
1883a8617a8SJordan K. Hubbard case 4: y = __kernel_sin(pi*(one-y),zero,0); break;
1893a8617a8SJordan K. Hubbard case 5:
1903a8617a8SJordan K. Hubbard case 6: y = -__kernel_cos(pi*(y-1.5),zero); break;
1913a8617a8SJordan K. Hubbard default: y = __kernel_sin(pi*(y-2.0),zero,0); break;
1923a8617a8SJordan K. Hubbard }
1933a8617a8SJordan K. Hubbard return -y;
1943a8617a8SJordan K. Hubbard }
1953a8617a8SJordan K. Hubbard
1963a8617a8SJordan K. Hubbard
19759b19ff1SAlfred Perlstein double
lgamma_r(double x,int * signgamp)198*99843eb8SSteve Kargl lgamma_r(double x, int *signgamp)
1993a8617a8SJordan K. Hubbard {
200a4e4b355SSteve Kargl double nadj,p,p1,p2,p3,q,r,t,w,y,z;
2019698b3b5SBruce Evans int32_t hx;
20273333154SSteve Kargl int i,ix,lx;
2033a8617a8SJordan K. Hubbard
2043a8617a8SJordan K. Hubbard EXTRACT_WORDS(hx,lx,x);
2053a8617a8SJordan K. Hubbard
206a4e4b355SSteve Kargl /* purge +-Inf and NaNs */
2073a8617a8SJordan K. Hubbard *signgamp = 1;
2083a8617a8SJordan K. Hubbard ix = hx&0x7fffffff;
2093a8617a8SJordan K. Hubbard if(ix>=0x7ff00000) return x*x;
210a4e4b355SSteve Kargl
211a4e4b355SSteve Kargl /* purge +-0 and tiny arguments */
212a4e4b355SSteve Kargl *signgamp = 1-2*((uint32_t)hx>>31);
213a4e4b355SSteve Kargl if(ix<0x3c700000) { /* |x|<2**-56, return -log(|x|) */
214a4e4b355SSteve Kargl if((ix|lx)==0)
215f382031dSSteve Kargl return one/vzero;
216*99843eb8SSteve Kargl return -log(fabs(x));
217f382031dSSteve Kargl }
218a4e4b355SSteve Kargl
219a4e4b355SSteve Kargl /* purge negative integers and start evaluation for other x < 0 */
2203a8617a8SJordan K. Hubbard if(hx<0) {
221a4e4b355SSteve Kargl *signgamp = 1;
2223a8617a8SJordan K. Hubbard if(ix>=0x43300000) /* |x|>=2**52, must be -integer */
22373333154SSteve Kargl return one/vzero;
2243a8617a8SJordan K. Hubbard t = sin_pi(x);
22573333154SSteve Kargl if(t==zero) return one/vzero; /* -integer */
226*99843eb8SSteve Kargl nadj = log(pi/fabs(t*x));
2273a8617a8SJordan K. Hubbard if(t<zero) *signgamp = -1;
2283a8617a8SJordan K. Hubbard x = -x;
2293a8617a8SJordan K. Hubbard }
2303a8617a8SJordan K. Hubbard
231a4e4b355SSteve Kargl /* purge 1 and 2 */
2323a8617a8SJordan K. Hubbard if((((ix-0x3ff00000)|lx)==0)||(((ix-0x40000000)|lx)==0)) r = 0;
2333a8617a8SJordan K. Hubbard /* for x < 2.0 */
2343a8617a8SJordan K. Hubbard else if(ix<0x40000000) {
2353a8617a8SJordan K. Hubbard if(ix<=0x3feccccc) { /* lgamma(x) = lgamma(x+1)-log(x) */
236*99843eb8SSteve Kargl r = -log(x);
2373a8617a8SJordan K. Hubbard if(ix>=0x3FE76944) {y = one-x; i= 0;}
2383a8617a8SJordan K. Hubbard else if(ix>=0x3FCDA661) {y= x-(tc-one); i=1;}
2393a8617a8SJordan K. Hubbard else {y = x; i=2;}
2403a8617a8SJordan K. Hubbard } else {
2413a8617a8SJordan K. Hubbard r = zero;
2423a8617a8SJordan K. Hubbard if(ix>=0x3FFBB4C3) {y=2.0-x;i=0;} /* [1.7316,2] */
2433a8617a8SJordan K. Hubbard else if(ix>=0x3FF3B4C4) {y=x-tc;i=1;} /* [1.23,1.73] */
2443a8617a8SJordan K. Hubbard else {y=x-one;i=2;}
2453a8617a8SJordan K. Hubbard }
2463a8617a8SJordan K. Hubbard switch(i) {
2473a8617a8SJordan K. Hubbard case 0:
2483a8617a8SJordan K. Hubbard z = y*y;
2493a8617a8SJordan K. Hubbard p1 = a0+z*(a2+z*(a4+z*(a6+z*(a8+z*a10))));
2503a8617a8SJordan K. Hubbard p2 = z*(a1+z*(a3+z*(a5+z*(a7+z*(a9+z*a11)))));
2513a8617a8SJordan K. Hubbard p = y*p1+p2;
252a4e4b355SSteve Kargl r += p-y/2; break;
2533a8617a8SJordan K. Hubbard case 1:
2543a8617a8SJordan K. Hubbard z = y*y;
2553a8617a8SJordan K. Hubbard w = z*y;
2563a8617a8SJordan K. Hubbard p1 = t0+w*(t3+w*(t6+w*(t9 +w*t12))); /* parallel comp */
2573a8617a8SJordan K. Hubbard p2 = t1+w*(t4+w*(t7+w*(t10+w*t13)));
2583a8617a8SJordan K. Hubbard p3 = t2+w*(t5+w*(t8+w*(t11+w*t14)));
2593a8617a8SJordan K. Hubbard p = z*p1-(tt-w*(p2+y*p3));
260a4e4b355SSteve Kargl r += tf + p; break;
2613a8617a8SJordan K. Hubbard case 2:
2623a8617a8SJordan K. Hubbard p1 = y*(u0+y*(u1+y*(u2+y*(u3+y*(u4+y*u5)))));
2633a8617a8SJordan K. Hubbard p2 = one+y*(v1+y*(v2+y*(v3+y*(v4+y*v5))));
264a4e4b355SSteve Kargl r += p1/p2-y/2;
2653a8617a8SJordan K. Hubbard }
2663a8617a8SJordan K. Hubbard }
267a4e4b355SSteve Kargl /* x < 8.0 */
268a4e4b355SSteve Kargl else if(ix<0x40200000) {
269a4e4b355SSteve Kargl i = x;
270a4e4b355SSteve Kargl y = x-i;
2713a8617a8SJordan K. Hubbard p = y*(s0+y*(s1+y*(s2+y*(s3+y*(s4+y*(s5+y*s6))))));
2723a8617a8SJordan K. Hubbard q = one+y*(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6)))));
273a4e4b355SSteve Kargl r = y/2+p/q;
2743a8617a8SJordan K. Hubbard z = one; /* lgamma(1+s) = log(s) + lgamma(s) */
2753a8617a8SJordan K. Hubbard switch(i) {
276f7efd14dSSteve Kargl case 7: z *= (y+6); /* FALLTHRU */
277f7efd14dSSteve Kargl case 6: z *= (y+5); /* FALLTHRU */
278f7efd14dSSteve Kargl case 5: z *= (y+4); /* FALLTHRU */
279f7efd14dSSteve Kargl case 4: z *= (y+3); /* FALLTHRU */
280f7efd14dSSteve Kargl case 3: z *= (y+2); /* FALLTHRU */
281*99843eb8SSteve Kargl r += log(z); break;
2823a8617a8SJordan K. Hubbard }
283a4e4b355SSteve Kargl /* 8.0 <= x < 2**56 */
284a4e4b355SSteve Kargl } else if (ix < 0x43700000) {
285*99843eb8SSteve Kargl t = log(x);
2863a8617a8SJordan K. Hubbard z = one/x;
2873a8617a8SJordan K. Hubbard y = z*z;
2883a8617a8SJordan K. Hubbard w = w0+z*(w1+y*(w2+y*(w3+y*(w4+y*(w5+y*w6)))));
2893a8617a8SJordan K. Hubbard r = (x-half)*(t-one)+w;
2903a8617a8SJordan K. Hubbard } else
291a4e4b355SSteve Kargl /* 2**56 <= x <= inf */
292*99843eb8SSteve Kargl r = x*(log(x)-one);
2933a8617a8SJordan K. Hubbard if(hx<0) r = nadj - r;
2943a8617a8SJordan K. Hubbard return r;
2953a8617a8SJordan K. Hubbard }
296f7efd14dSSteve Kargl
297f7efd14dSSteve Kargl #if (LDBL_MANT_DIG == 53)
298f7efd14dSSteve Kargl __weak_reference(lgamma_r, lgammal_r);
299f7efd14dSSteve Kargl #endif
300