xref: /freebsd/lib/msun/src/e_jnf.c (revision 380a989b3223d455375b4fae70fd0b9bdd43bafb)
1 /* e_jnf.c -- float version of e_jn.c.
2  * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
3  */
4 
5 /*
6  * ====================================================
7  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
8  *
9  * Developed at SunPro, a Sun Microsystems, Inc. business.
10  * Permission to use, copy, modify, and distribute this
11  * software is freely granted, provided that this notice
12  * is preserved.
13  * ====================================================
14  */
15 
16 #ifndef lint
17 static char rcsid[] = "$Id$";
18 #endif
19 
20 #include "math.h"
21 #include "math_private.h"
22 
23 #ifdef __STDC__
24 static const float
25 #else
26 static float
27 #endif
28 invsqrtpi=  5.6418961287e-01, /* 0x3f106ebb */
29 two   =  2.0000000000e+00, /* 0x40000000 */
30 one   =  1.0000000000e+00; /* 0x3F800000 */
31 
32 #ifdef __STDC__
33 static const float zero  =  0.0000000000e+00;
34 #else
35 static float zero  =  0.0000000000e+00;
36 #endif
37 
38 #ifdef __STDC__
39 	float __ieee754_jnf(int n, float x)
40 #else
41 	float __ieee754_jnf(n,x)
42 	int n; float x;
43 #endif
44 {
45 	int32_t i,hx,ix, sgn;
46 	float a, b, temp, di;
47 	float z, w;
48 
49     /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
50      * Thus, J(-n,x) = J(n,-x)
51      */
52 	GET_FLOAT_WORD(hx,x);
53 	ix = 0x7fffffff&hx;
54     /* if J(n,NaN) is NaN */
55 	if(ix>0x7f800000) return x+x;
56 	if(n<0){
57 		n = -n;
58 		x = -x;
59 		hx ^= 0x80000000;
60 	}
61 	if(n==0) return(__ieee754_j0f(x));
62 	if(n==1) return(__ieee754_j1f(x));
63 	sgn = (n&1)&(hx>>31);	/* even n -- 0, odd n -- sign(x) */
64 	x = fabsf(x);
65 	if(ix==0||ix>=0x7f800000) 	/* if x is 0 or inf */
66 	    b = zero;
67 	else if((float)n<=x) {
68 		/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
69 	    a = __ieee754_j0f(x);
70 	    b = __ieee754_j1f(x);
71 	    for(i=1;i<n;i++){
72 		temp = b;
73 		b = b*((float)(i+i)/x) - a; /* avoid underflow */
74 		a = temp;
75 	    }
76 	} else {
77 	    if(ix<0x30800000) {	/* x < 2**-29 */
78     /* x is tiny, return the first Taylor expansion of J(n,x)
79      * J(n,x) = 1/n!*(x/2)^n  - ...
80      */
81 		if(n>33)	/* underflow */
82 		    b = zero;
83 		else {
84 		    temp = x*(float)0.5; b = temp;
85 		    for (a=one,i=2;i<=n;i++) {
86 			a *= (float)i;		/* a = n! */
87 			b *= temp;		/* b = (x/2)^n */
88 		    }
89 		    b = b/a;
90 		}
91 	    } else {
92 		/* use backward recurrence */
93 		/* 			x      x^2      x^2
94 		 *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
95 		 *			2n  - 2(n+1) - 2(n+2)
96 		 *
97 		 * 			1      1        1
98 		 *  (for large x)   =  ----  ------   ------   .....
99 		 *			2n   2(n+1)   2(n+2)
100 		 *			-- - ------ - ------ -
101 		 *			 x     x         x
102 		 *
103 		 * Let w = 2n/x and h=2/x, then the above quotient
104 		 * is equal to the continued fraction:
105 		 *		    1
106 		 *	= -----------------------
107 		 *		       1
108 		 *	   w - -----------------
109 		 *			  1
110 		 * 	        w+h - ---------
111 		 *		       w+2h - ...
112 		 *
113 		 * To determine how many terms needed, let
114 		 * Q(0) = w, Q(1) = w(w+h) - 1,
115 		 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
116 		 * When Q(k) > 1e4	good for single
117 		 * When Q(k) > 1e9	good for double
118 		 * When Q(k) > 1e17	good for quadruple
119 		 */
120 	    /* determine k */
121 		float t,v;
122 		float q0,q1,h,tmp; int32_t k,m;
123 		w  = (n+n)/(float)x; h = (float)2.0/(float)x;
124 		q0 = w;  z = w+h; q1 = w*z - (float)1.0; k=1;
125 		while(q1<(float)1.0e9) {
126 			k += 1; z += h;
127 			tmp = z*q1 - q0;
128 			q0 = q1;
129 			q1 = tmp;
130 		}
131 		m = n+n;
132 		for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
133 		a = t;
134 		b = one;
135 		/*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
136 		 *  Hence, if n*(log(2n/x)) > ...
137 		 *  single 8.8722839355e+01
138 		 *  double 7.09782712893383973096e+02
139 		 *  long double 1.1356523406294143949491931077970765006170e+04
140 		 *  then recurrent value may overflow and the result is
141 		 *  likely underflow to zero
142 		 */
143 		tmp = n;
144 		v = two/x;
145 		tmp = tmp*__ieee754_logf(fabsf(v*tmp));
146 		if(tmp<(float)8.8721679688e+01) {
147 	    	    for(i=n-1,di=(float)(i+i);i>0;i--){
148 		        temp = b;
149 			b *= di;
150 			b  = b/x - a;
151 		        a = temp;
152 			di -= two;
153 	     	    }
154 		} else {
155 	    	    for(i=n-1,di=(float)(i+i);i>0;i--){
156 		        temp = b;
157 			b *= di;
158 			b  = b/x - a;
159 		        a = temp;
160 			di -= two;
161 		    /* scale b to avoid spurious overflow */
162 			if(b>(float)1e10) {
163 			    a /= b;
164 			    t /= b;
165 			    b  = one;
166 			}
167 	     	    }
168 		}
169 	    	b = (t*__ieee754_j0f(x)/b);
170 	    }
171 	}
172 	if(sgn==1) return -b; else return b;
173 }
174 
175 #ifdef __STDC__
176 	float __ieee754_ynf(int n, float x)
177 #else
178 	float __ieee754_ynf(n,x)
179 	int n; float x;
180 #endif
181 {
182 	int32_t i,hx,ix,ib;
183 	int32_t sign;
184 	float a, b, temp;
185 
186 	GET_FLOAT_WORD(hx,x);
187 	ix = 0x7fffffff&hx;
188     /* if Y(n,NaN) is NaN */
189 	if(ix>0x7f800000) return x+x;
190 	if(ix==0) return -one/zero;
191 	if(hx<0) return zero/zero;
192 	sign = 1;
193 	if(n<0){
194 		n = -n;
195 		sign = 1 - ((n&1)<<1);
196 	}
197 	if(n==0) return(__ieee754_y0f(x));
198 	if(n==1) return(sign*__ieee754_y1f(x));
199 	if(ix==0x7f800000) return zero;
200 
201 	a = __ieee754_y0f(x);
202 	b = __ieee754_y1f(x);
203 	/* quit if b is -inf */
204 	GET_FLOAT_WORD(ib,b);
205 	for(i=1;i<n&&ib!=0xff800000;i++){
206 	    temp = b;
207 	    b = ((float)(i+i)/x)*b - a;
208 	    GET_FLOAT_WORD(ib,b);
209 	    a = temp;
210 	}
211 	if(sign>0) return b; else return -b;
212 }
213