xref: /freebsd/lib/msun/src/e_jnf.c (revision 2e3f49888ec8851bafb22011533217487764fdb0)
1 /* e_jnf.c -- float version of e_jn.c.
2  * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
3  */
4 
5 /*
6  * ====================================================
7  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
8  *
9  * Developed at SunPro, a Sun Microsystems, Inc. business.
10  * Permission to use, copy, modify, and distribute this
11  * software is freely granted, provided that this notice
12  * is preserved.
13  * ====================================================
14  */
15 
16 /*
17  * See e_jn.c for complete comments.
18  */
19 
20 #include "math.h"
21 #include "math_private.h"
22 
23 static const volatile float vone = 1, vzero = 0;
24 
25 static const float
26 two   =  2.0000000000e+00, /* 0x40000000 */
27 one   =  1.0000000000e+00; /* 0x3F800000 */
28 
29 static const float zero  =  0.0000000000e+00;
30 
31 float
32 jnf(int n, float x)
33 {
34 	int32_t i,hx,ix, sgn;
35 	float a, b, temp, di;
36 	float z, w;
37 
38     /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
39      * Thus, J(-n,x) = J(n,-x)
40      */
41 	GET_FLOAT_WORD(hx,x);
42 	ix = 0x7fffffff&hx;
43     /* if J(n,NaN) is NaN */
44 	if(ix>0x7f800000) return x+x;
45 	if(n<0){
46 		n = -n;
47 		x = -x;
48 		hx ^= 0x80000000;
49 	}
50 	if(n==0) return(j0f(x));
51 	if(n==1) return(j1f(x));
52 	sgn = (n&1)&(hx>>31);	/* even n -- 0, odd n -- sign(x) */
53 	x = fabsf(x);
54 	if(ix==0||ix>=0x7f800000) 	/* if x is 0 or inf */
55 	    b = zero;
56 	else if((float)n<=x) {
57 		/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
58 	    a = j0f(x);
59 	    b = j1f(x);
60 	    for(i=1;i<n;i++){
61 		temp = b;
62 		b = b*((float)(i+i)/x) - a; /* avoid underflow */
63 		a = temp;
64 	    }
65 	} else {
66 	    if(ix<0x30800000) {	/* x < 2**-29 */
67     /* x is tiny, return the first Taylor expansion of J(n,x)
68      * J(n,x) = 1/n!*(x/2)^n  - ...
69      */
70 		if(n>33)	/* underflow */
71 		    b = zero;
72 		else {
73 		    temp = x*(float)0.5; b = temp;
74 		    for (a=one,i=2;i<=n;i++) {
75 			a *= (float)i;		/* a = n! */
76 			b *= temp;		/* b = (x/2)^n */
77 		    }
78 		    b = b/a;
79 		}
80 	    } else {
81 		/* use backward recurrence */
82 		/* 			x      x^2      x^2
83 		 *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
84 		 *			2n  - 2(n+1) - 2(n+2)
85 		 *
86 		 * 			1      1        1
87 		 *  (for large x)   =  ----  ------   ------   .....
88 		 *			2n   2(n+1)   2(n+2)
89 		 *			-- - ------ - ------ -
90 		 *			 x     x         x
91 		 *
92 		 * Let w = 2n/x and h=2/x, then the above quotient
93 		 * is equal to the continued fraction:
94 		 *		    1
95 		 *	= -----------------------
96 		 *		       1
97 		 *	   w - -----------------
98 		 *			  1
99 		 * 	        w+h - ---------
100 		 *		       w+2h - ...
101 		 *
102 		 * To determine how many terms needed, let
103 		 * Q(0) = w, Q(1) = w(w+h) - 1,
104 		 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
105 		 * When Q(k) > 1e4	good for single
106 		 * When Q(k) > 1e9	good for double
107 		 * When Q(k) > 1e17	good for quadruple
108 		 */
109 	    /* determine k */
110 		float t,v;
111 		float q0,q1,h,tmp; int32_t k,m;
112 		w  = (n+n)/(float)x; h = (float)2.0/(float)x;
113 		q0 = w;  z = w+h; q1 = w*z - (float)1.0; k=1;
114 		while(q1<(float)1.0e9) {
115 			k += 1; z += h;
116 			tmp = z*q1 - q0;
117 			q0 = q1;
118 			q1 = tmp;
119 		}
120 		m = n+n;
121 		for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
122 		a = t;
123 		b = one;
124 		/*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
125 		 *  Hence, if n*(log(2n/x)) > ...
126 		 *  single 8.8722839355e+01
127 		 *  double 7.09782712893383973096e+02
128 		 *  long double 1.1356523406294143949491931077970765006170e+04
129 		 *  then recurrent value may overflow and the result is
130 		 *  likely underflow to zero
131 		 */
132 		tmp = n;
133 		v = two/x;
134 		tmp = tmp*logf(fabsf(v*tmp));
135 		if(tmp<(float)8.8721679688e+01) {
136 	    	    for(i=n-1,di=(float)(i+i);i>0;i--){
137 		        temp = b;
138 			b *= di;
139 			b  = b/x - a;
140 		        a = temp;
141 			di -= two;
142 	     	    }
143 		} else {
144 	    	    for(i=n-1,di=(float)(i+i);i>0;i--){
145 		        temp = b;
146 			b *= di;
147 			b  = b/x - a;
148 		        a = temp;
149 			di -= two;
150 		    /* scale b to avoid spurious overflow */
151 			if(b>(float)1e10) {
152 			    a /= b;
153 			    t /= b;
154 			    b  = one;
155 			}
156 	     	    }
157 		}
158 		z = j0f(x);
159 		w = j1f(x);
160 		if (fabsf(z) >= fabsf(w))
161 		    b = (t*z/b);
162 		else
163 		    b = (t*w/a);
164 	    }
165 	}
166 	if(sgn==1) return -b; else return b;
167 }
168 
169 float
170 ynf(int n, float x)
171 {
172 	int32_t i,hx,ix,ib;
173 	int32_t sign;
174 	float a, b, temp;
175 
176 	GET_FLOAT_WORD(hx,x);
177 	ix = 0x7fffffff&hx;
178 	if(ix>0x7f800000) return x+x;
179 	if(ix==0) return -one/vzero;
180 	if(hx<0) return vzero/vzero;
181 	sign = 1;
182 	if(n<0){
183 		n = -n;
184 		sign = 1 - ((n&1)<<1);
185 	}
186 	if(n==0) return(y0f(x));
187 	if(n==1) return(sign*y1f(x));
188 	if(ix==0x7f800000) return zero;
189 
190 	a = y0f(x);
191 	b = y1f(x);
192 	/* quit if b is -inf */
193 	GET_FLOAT_WORD(ib,b);
194 	for(i=1;i<n&&ib!=0xff800000;i++){
195 	    temp = b;
196 	    b = ((float)(i+i)/x)*b - a;
197 	    GET_FLOAT_WORD(ib,b);
198 	    a = temp;
199 	}
200 	if(sign>0) return b; else return -b;
201 }
202