xref: /freebsd/lib/msun/src/e_jn.c (revision 59c8e88e72633afbc47a4ace0d2170d00d51f7dc)
1 /*
2  * ====================================================
3  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
4  *
5  * Developed at SunSoft, a Sun Microsystems, Inc. business.
6  * Permission to use, copy, modify, and distribute this
7  * software is freely granted, provided that this notice
8  * is preserved.
9  * ====================================================
10  */
11 
12 /*
13  * jn(n, x), yn(n, x)
14  * floating point Bessel's function of the 1st and 2nd kind
15  * of order n
16  *
17  * Special cases:
18  *	y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
19  *	y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
20  * Note 2. About jn(n,x), yn(n,x)
21  *	For n=0, j0(x) is called.
22  *	For n=1, j1(x) is called.
23  *	For n<x, forward recursion is used starting
24  *	from values of j0(x) and j1(x).
25  *	For n>x, a continued fraction approximation to
26  *	j(n,x)/j(n-1,x) is evaluated and then backward
27  *	recursion is used starting from a supposed value
28  *	for j(n,x). The resulting values of j(0,x) or j(1,x) are
29  *	compared with the actual values to correct the
30  *	supposed value of j(n,x).
31  *
32  *	yn(n,x) is similar in all respects, except
33  *	that forward recursion is used for all
34  *	values of n>1.
35  */
36 
37 #include "math.h"
38 #include "math_private.h"
39 
40 static const volatile double vone = 1, vzero = 0;
41 
42 static const double
43 invsqrtpi=  5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
44 two   =  2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */
45 one   =  1.00000000000000000000e+00; /* 0x3FF00000, 0x00000000 */
46 
47 static const double zero  =  0.00000000000000000000e+00;
48 
49 double
50 jn(int n, double x)
51 {
52 	int32_t i,hx,ix,lx, sgn;
53 	double a, b, c, s, temp, di;
54 	double z, w;
55 
56     /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
57      * Thus, J(-n,x) = J(n,-x)
58      */
59 	EXTRACT_WORDS(hx,lx,x);
60 	ix = 0x7fffffff&hx;
61     /* if J(n,NaN) is NaN */
62 	if((ix|((u_int32_t)(lx|-lx))>>31)>0x7ff00000) return x+x;
63 	if(n<0){
64 		n = -n;
65 		x = -x;
66 		hx ^= 0x80000000;
67 	}
68 	if(n==0) return(j0(x));
69 	if(n==1) return(j1(x));
70 	sgn = (n&1)&(hx>>31);	/* even n -- 0, odd n -- sign(x) */
71 	x = fabs(x);
72 	if((ix|lx)==0||ix>=0x7ff00000) 	/* if x is 0 or inf */
73 	    b = zero;
74 	else if((double)n<=x) {
75 		/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
76 	    if(ix>=0x52D00000) { /* x > 2**302 */
77     /* (x >> n**2)
78      *	    Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
79      *	    Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
80      *	    Let s=sin(x), c=cos(x),
81      *		xn=x-(2n+1)*pi/4, sqt2 = sqrt(2), then
82      *
83      *		   n	sin(xn)*sqt2	cos(xn)*sqt2
84      *		----------------------------------
85      *		   0	 s-c		 c+s
86      *		   1	-s-c 		-c+s
87      *		   2	-s+c		-c-s
88      *		   3	 s+c		 c-s
89      */
90 		sincos(x, &s, &c);
91 		switch(n&3) {
92 		    case 0: temp =  c+s; break;
93 		    case 1: temp = -c+s; break;
94 		    case 2: temp = -c-s; break;
95 		    case 3: temp =  c-s; break;
96 		}
97 		b = invsqrtpi*temp/sqrt(x);
98 	    } else {
99 	        a = j0(x);
100 	        b = j1(x);
101 	        for(i=1;i<n;i++){
102 		    temp = b;
103 		    b = b*((double)(i+i)/x) - a; /* avoid underflow */
104 		    a = temp;
105 	        }
106 	    }
107 	} else {
108 	    if(ix<0x3e100000) {	/* x < 2**-29 */
109     /* x is tiny, return the first Taylor expansion of J(n,x)
110      * J(n,x) = 1/n!*(x/2)^n  - ...
111      */
112 		if(n>33)	/* underflow */
113 		    b = zero;
114 		else {
115 		    temp = x*0.5; b = temp;
116 		    for (a=one,i=2;i<=n;i++) {
117 			a *= (double)i;		/* a = n! */
118 			b *= temp;		/* b = (x/2)^n */
119 		    }
120 		    b = b/a;
121 		}
122 	    } else {
123 		/* use backward recurrence */
124 		/* 			x      x^2      x^2
125 		 *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
126 		 *			2n  - 2(n+1) - 2(n+2)
127 		 *
128 		 * 			1      1        1
129 		 *  (for large x)   =  ----  ------   ------   .....
130 		 *			2n   2(n+1)   2(n+2)
131 		 *			-- - ------ - ------ -
132 		 *			 x     x         x
133 		 *
134 		 * Let w = 2n/x and h=2/x, then the above quotient
135 		 * is equal to the continued fraction:
136 		 *		    1
137 		 *	= -----------------------
138 		 *		       1
139 		 *	   w - -----------------
140 		 *			  1
141 		 * 	        w+h - ---------
142 		 *		       w+2h - ...
143 		 *
144 		 * To determine how many terms needed, let
145 		 * Q(0) = w, Q(1) = w(w+h) - 1,
146 		 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
147 		 * When Q(k) > 1e4	good for single
148 		 * When Q(k) > 1e9	good for double
149 		 * When Q(k) > 1e17	good for quadruple
150 		 */
151 	    /* determine k */
152 		double t,v;
153 		double q0,q1,h,tmp; int32_t k,m;
154 		w  = (n+n)/(double)x; h = 2.0/(double)x;
155 		q0 = w;  z = w+h; q1 = w*z - 1.0; k=1;
156 		while(q1<1.0e9) {
157 			k += 1; z += h;
158 			tmp = z*q1 - q0;
159 			q0 = q1;
160 			q1 = tmp;
161 		}
162 		m = n+n;
163 		for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
164 		a = t;
165 		b = one;
166 		/*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
167 		 *  Hence, if n*(log(2n/x)) > ...
168 		 *  single 8.8722839355e+01
169 		 *  double 7.09782712893383973096e+02
170 		 *  long double 1.1356523406294143949491931077970765006170e+04
171 		 *  then recurrent value may overflow and the result is
172 		 *  likely underflow to zero
173 		 */
174 		tmp = n;
175 		v = two/x;
176 		tmp = tmp*log(fabs(v*tmp));
177 		if(tmp<7.09782712893383973096e+02) {
178 	    	    for(i=n-1,di=(double)(i+i);i>0;i--){
179 		        temp = b;
180 			b *= di;
181 			b  = b/x - a;
182 		        a = temp;
183 			di -= two;
184 	     	    }
185 		} else {
186 	    	    for(i=n-1,di=(double)(i+i);i>0;i--){
187 		        temp = b;
188 			b *= di;
189 			b  = b/x - a;
190 		        a = temp;
191 			di -= two;
192 		    /* scale b to avoid spurious overflow */
193 			if(b>1e100) {
194 			    a /= b;
195 			    t /= b;
196 			    b  = one;
197 			}
198 	     	    }
199 		}
200 		z = j0(x);
201 		w = j1(x);
202 		if (fabs(z) >= fabs(w))
203 		    b = (t*z/b);
204 		else
205 		    b = (t*w/a);
206 	    }
207 	}
208 	if(sgn==1) return -b; else return b;
209 }
210 
211 double
212 yn(int n, double x)
213 {
214 	int32_t i,hx,ix,lx;
215 	int32_t sign;
216 	double a, b, c, s, temp;
217 
218 	EXTRACT_WORDS(hx,lx,x);
219 	ix = 0x7fffffff&hx;
220 	/* yn(n,NaN) = NaN */
221 	if((ix|((u_int32_t)(lx|-lx))>>31)>0x7ff00000) return x+x;
222 	/* yn(n,+-0) = -inf and raise divide-by-zero exception. */
223 	if((ix|lx)==0) return -one/vzero;
224 	/* yn(n,x<0) = NaN and raise invalid exception. */
225 	if(hx<0) return vzero/vzero;
226 	sign = 1;
227 	if(n<0){
228 		n = -n;
229 		sign = 1 - ((n&1)<<1);
230 	}
231 	if(n==0) return(y0(x));
232 	if(n==1) return(sign*y1(x));
233 	if(ix==0x7ff00000) return zero;
234 	if(ix>=0x52D00000) { /* x > 2**302 */
235     /* (x >> n**2)
236      *	    Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
237      *	    Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
238      *	    Let s=sin(x), c=cos(x),
239      *		xn=x-(2n+1)*pi/4, sqt2 = sqrt(2), then
240      *
241      *		   n	sin(xn)*sqt2	cos(xn)*sqt2
242      *		----------------------------------
243      *		   0	 s-c		 c+s
244      *		   1	-s-c 		-c+s
245      *		   2	-s+c		-c-s
246      *		   3	 s+c		 c-s
247      */
248 		sincos(x, &s, &c);
249 		switch(n&3) {
250 		    case 0: temp =  s-c; break;
251 		    case 1: temp = -s-c; break;
252 		    case 2: temp = -s+c; break;
253 		    case 3: temp =  s+c; break;
254 		}
255 		b = invsqrtpi*temp/sqrt(x);
256 	} else {
257 	    u_int32_t high;
258 	    a = y0(x);
259 	    b = y1(x);
260 	/* quit if b is -inf */
261 	    GET_HIGH_WORD(high,b);
262 	    for(i=1;i<n&&high!=0xfff00000;i++){
263 		temp = b;
264 		b = ((double)(i+i)/x)*b - a;
265 		GET_HIGH_WORD(high,b);
266 		a = temp;
267 	    }
268 	}
269 	if(sign>0) return b; else return -b;
270 }
271