xref: /freebsd/lib/msun/src/e_jn.c (revision 22cf89c938886d14f5796fc49f9f020c23ea8eaf)
1 /* @(#)e_jn.c 1.4 95/01/18 */
2 /*
3  * ====================================================
4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5  *
6  * Developed at SunSoft, a Sun Microsystems, Inc. business.
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  */
12 
13 #include <sys/cdefs.h>
14 /*
15  * jn(n, x), yn(n, x)
16  * floating point Bessel's function of the 1st and 2nd kind
17  * of order n
18  *
19  * Special cases:
20  *	y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
21  *	y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
22  * Note 2. About jn(n,x), yn(n,x)
23  *	For n=0, j0(x) is called.
24  *	For n=1, j1(x) is called.
25  *	For n<x, forward recursion is used starting
26  *	from values of j0(x) and j1(x).
27  *	For n>x, a continued fraction approximation to
28  *	j(n,x)/j(n-1,x) is evaluated and then backward
29  *	recursion is used starting from a supposed value
30  *	for j(n,x). The resulting values of j(0,x) or j(1,x) are
31  *	compared with the actual values to correct the
32  *	supposed value of j(n,x).
33  *
34  *	yn(n,x) is similar in all respects, except
35  *	that forward recursion is used for all
36  *	values of n>1.
37  */
38 
39 #include "math.h"
40 #include "math_private.h"
41 
42 static const volatile double vone = 1, vzero = 0;
43 
44 static const double
45 invsqrtpi=  5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
46 two   =  2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */
47 one   =  1.00000000000000000000e+00; /* 0x3FF00000, 0x00000000 */
48 
49 static const double zero  =  0.00000000000000000000e+00;
50 
51 double
52 jn(int n, double x)
53 {
54 	int32_t i,hx,ix,lx, sgn;
55 	double a, b, c, s, temp, di;
56 	double z, w;
57 
58     /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
59      * Thus, J(-n,x) = J(n,-x)
60      */
61 	EXTRACT_WORDS(hx,lx,x);
62 	ix = 0x7fffffff&hx;
63     /* if J(n,NaN) is NaN */
64 	if((ix|((u_int32_t)(lx|-lx))>>31)>0x7ff00000) return x+x;
65 	if(n<0){
66 		n = -n;
67 		x = -x;
68 		hx ^= 0x80000000;
69 	}
70 	if(n==0) return(j0(x));
71 	if(n==1) return(j1(x));
72 	sgn = (n&1)&(hx>>31);	/* even n -- 0, odd n -- sign(x) */
73 	x = fabs(x);
74 	if((ix|lx)==0||ix>=0x7ff00000) 	/* if x is 0 or inf */
75 	    b = zero;
76 	else if((double)n<=x) {
77 		/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
78 	    if(ix>=0x52D00000) { /* x > 2**302 */
79     /* (x >> n**2)
80      *	    Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
81      *	    Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
82      *	    Let s=sin(x), c=cos(x),
83      *		xn=x-(2n+1)*pi/4, sqt2 = sqrt(2), then
84      *
85      *		   n	sin(xn)*sqt2	cos(xn)*sqt2
86      *		----------------------------------
87      *		   0	 s-c		 c+s
88      *		   1	-s-c 		-c+s
89      *		   2	-s+c		-c-s
90      *		   3	 s+c		 c-s
91      */
92 		sincos(x, &s, &c);
93 		switch(n&3) {
94 		    case 0: temp =  c+s; break;
95 		    case 1: temp = -c+s; break;
96 		    case 2: temp = -c-s; break;
97 		    case 3: temp =  c-s; break;
98 		}
99 		b = invsqrtpi*temp/sqrt(x);
100 	    } else {
101 	        a = j0(x);
102 	        b = j1(x);
103 	        for(i=1;i<n;i++){
104 		    temp = b;
105 		    b = b*((double)(i+i)/x) - a; /* avoid underflow */
106 		    a = temp;
107 	        }
108 	    }
109 	} else {
110 	    if(ix<0x3e100000) {	/* x < 2**-29 */
111     /* x is tiny, return the first Taylor expansion of J(n,x)
112      * J(n,x) = 1/n!*(x/2)^n  - ...
113      */
114 		if(n>33)	/* underflow */
115 		    b = zero;
116 		else {
117 		    temp = x*0.5; b = temp;
118 		    for (a=one,i=2;i<=n;i++) {
119 			a *= (double)i;		/* a = n! */
120 			b *= temp;		/* b = (x/2)^n */
121 		    }
122 		    b = b/a;
123 		}
124 	    } else {
125 		/* use backward recurrence */
126 		/* 			x      x^2      x^2
127 		 *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
128 		 *			2n  - 2(n+1) - 2(n+2)
129 		 *
130 		 * 			1      1        1
131 		 *  (for large x)   =  ----  ------   ------   .....
132 		 *			2n   2(n+1)   2(n+2)
133 		 *			-- - ------ - ------ -
134 		 *			 x     x         x
135 		 *
136 		 * Let w = 2n/x and h=2/x, then the above quotient
137 		 * is equal to the continued fraction:
138 		 *		    1
139 		 *	= -----------------------
140 		 *		       1
141 		 *	   w - -----------------
142 		 *			  1
143 		 * 	        w+h - ---------
144 		 *		       w+2h - ...
145 		 *
146 		 * To determine how many terms needed, let
147 		 * Q(0) = w, Q(1) = w(w+h) - 1,
148 		 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
149 		 * When Q(k) > 1e4	good for single
150 		 * When Q(k) > 1e9	good for double
151 		 * When Q(k) > 1e17	good for quadruple
152 		 */
153 	    /* determine k */
154 		double t,v;
155 		double q0,q1,h,tmp; int32_t k,m;
156 		w  = (n+n)/(double)x; h = 2.0/(double)x;
157 		q0 = w;  z = w+h; q1 = w*z - 1.0; k=1;
158 		while(q1<1.0e9) {
159 			k += 1; z += h;
160 			tmp = z*q1 - q0;
161 			q0 = q1;
162 			q1 = tmp;
163 		}
164 		m = n+n;
165 		for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
166 		a = t;
167 		b = one;
168 		/*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
169 		 *  Hence, if n*(log(2n/x)) > ...
170 		 *  single 8.8722839355e+01
171 		 *  double 7.09782712893383973096e+02
172 		 *  long double 1.1356523406294143949491931077970765006170e+04
173 		 *  then recurrent value may overflow and the result is
174 		 *  likely underflow to zero
175 		 */
176 		tmp = n;
177 		v = two/x;
178 		tmp = tmp*log(fabs(v*tmp));
179 		if(tmp<7.09782712893383973096e+02) {
180 	    	    for(i=n-1,di=(double)(i+i);i>0;i--){
181 		        temp = b;
182 			b *= di;
183 			b  = b/x - a;
184 		        a = temp;
185 			di -= two;
186 	     	    }
187 		} else {
188 	    	    for(i=n-1,di=(double)(i+i);i>0;i--){
189 		        temp = b;
190 			b *= di;
191 			b  = b/x - a;
192 		        a = temp;
193 			di -= two;
194 		    /* scale b to avoid spurious overflow */
195 			if(b>1e100) {
196 			    a /= b;
197 			    t /= b;
198 			    b  = one;
199 			}
200 	     	    }
201 		}
202 		z = j0(x);
203 		w = j1(x);
204 		if (fabs(z) >= fabs(w))
205 		    b = (t*z/b);
206 		else
207 		    b = (t*w/a);
208 	    }
209 	}
210 	if(sgn==1) return -b; else return b;
211 }
212 
213 double
214 yn(int n, double x)
215 {
216 	int32_t i,hx,ix,lx;
217 	int32_t sign;
218 	double a, b, c, s, temp;
219 
220 	EXTRACT_WORDS(hx,lx,x);
221 	ix = 0x7fffffff&hx;
222 	/* yn(n,NaN) = NaN */
223 	if((ix|((u_int32_t)(lx|-lx))>>31)>0x7ff00000) return x+x;
224 	/* yn(n,+-0) = -inf and raise divide-by-zero exception. */
225 	if((ix|lx)==0) return -one/vzero;
226 	/* yn(n,x<0) = NaN and raise invalid exception. */
227 	if(hx<0) return vzero/vzero;
228 	sign = 1;
229 	if(n<0){
230 		n = -n;
231 		sign = 1 - ((n&1)<<1);
232 	}
233 	if(n==0) return(y0(x));
234 	if(n==1) return(sign*y1(x));
235 	if(ix==0x7ff00000) return zero;
236 	if(ix>=0x52D00000) { /* x > 2**302 */
237     /* (x >> n**2)
238      *	    Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
239      *	    Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
240      *	    Let s=sin(x), c=cos(x),
241      *		xn=x-(2n+1)*pi/4, sqt2 = sqrt(2), then
242      *
243      *		   n	sin(xn)*sqt2	cos(xn)*sqt2
244      *		----------------------------------
245      *		   0	 s-c		 c+s
246      *		   1	-s-c 		-c+s
247      *		   2	-s+c		-c-s
248      *		   3	 s+c		 c-s
249      */
250 		sincos(x, &s, &c);
251 		switch(n&3) {
252 		    case 0: temp =  s-c; break;
253 		    case 1: temp = -s-c; break;
254 		    case 2: temp = -s+c; break;
255 		    case 3: temp =  s+c; break;
256 		}
257 		b = invsqrtpi*temp/sqrt(x);
258 	} else {
259 	    u_int32_t high;
260 	    a = y0(x);
261 	    b = y1(x);
262 	/* quit if b is -inf */
263 	    GET_HIGH_WORD(high,b);
264 	    for(i=1;i<n&&high!=0xfff00000;i++){
265 		temp = b;
266 		b = ((double)(i+i)/x)*b - a;
267 		GET_HIGH_WORD(high,b);
268 		a = temp;
269 	    }
270 	}
271 	if(sign>0) return b; else return -b;
272 }
273