xref: /freebsd/lib/msun/src/e_jn.c (revision 1b6c76a2fe091c74f08427e6c870851025a9cf67)
1 /* @(#)e_jn.c 5.1 93/09/24 */
2 /*
3  * ====================================================
4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5  *
6  * Developed at SunPro, a Sun Microsystems, Inc. business.
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  */
12 
13 #ifndef lint
14 static char rcsid[] = "$FreeBSD$";
15 #endif
16 
17 /*
18  * __ieee754_jn(n, x), __ieee754_yn(n, x)
19  * floating point Bessel's function of the 1st and 2nd kind
20  * of order n
21  *
22  * Special cases:
23  *	y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
24  *	y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
25  * Note 2. About jn(n,x), yn(n,x)
26  *	For n=0, j0(x) is called,
27  *	for n=1, j1(x) is called,
28  *	for n<x, forward recursion us used starting
29  *	from values of j0(x) and j1(x).
30  *	for n>x, a continued fraction approximation to
31  *	j(n,x)/j(n-1,x) is evaluated and then backward
32  *	recursion is used starting from a supposed value
33  *	for j(n,x). The resulting value of j(0,x) is
34  *	compared with the actual value to correct the
35  *	supposed value of j(n,x).
36  *
37  *	yn(n,x) is similar in all respects, except
38  *	that forward recursion is used for all
39  *	values of n>1.
40  *
41  */
42 
43 #include "math.h"
44 #include "math_private.h"
45 
46 #ifdef __STDC__
47 static const double
48 #else
49 static double
50 #endif
51 invsqrtpi=  5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
52 two   =  2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */
53 one   =  1.00000000000000000000e+00; /* 0x3FF00000, 0x00000000 */
54 
55 #ifdef __STDC__
56 static const double zero  =  0.00000000000000000000e+00;
57 #else
58 static double zero  =  0.00000000000000000000e+00;
59 #endif
60 
61 #ifdef __STDC__
62 	double __ieee754_jn(int n, double x)
63 #else
64 	double __ieee754_jn(n,x)
65 	int n; double x;
66 #endif
67 {
68 	int32_t i,hx,ix,lx, sgn;
69 	double a, b, temp, di;
70 	double z, w;
71 
72     /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
73      * Thus, J(-n,x) = J(n,-x)
74      */
75 	EXTRACT_WORDS(hx,lx,x);
76 	ix = 0x7fffffff&hx;
77     /* if J(n,NaN) is NaN */
78 	if((ix|((u_int32_t)(lx|-lx))>>31)>0x7ff00000) return x+x;
79 	if(n<0){
80 		n = -n;
81 		x = -x;
82 		hx ^= 0x80000000;
83 	}
84 	if(n==0) return(__ieee754_j0(x));
85 	if(n==1) return(__ieee754_j1(x));
86 	sgn = (n&1)&(hx>>31);	/* even n -- 0, odd n -- sign(x) */
87 	x = fabs(x);
88 	if((ix|lx)==0||ix>=0x7ff00000) 	/* if x is 0 or inf */
89 	    b = zero;
90 	else if((double)n<=x) {
91 		/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
92 	    if(ix>=0x52D00000) { /* x > 2**302 */
93     /* (x >> n**2)
94      *	    Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
95      *	    Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
96      *	    Let s=sin(x), c=cos(x),
97      *		xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
98      *
99      *		   n	sin(xn)*sqt2	cos(xn)*sqt2
100      *		----------------------------------
101      *		   0	 s-c		 c+s
102      *		   1	-s-c 		-c+s
103      *		   2	-s+c		-c-s
104      *		   3	 s+c		 c-s
105      */
106 		switch(n&3) {
107 		    case 0: temp =  cos(x)+sin(x); break;
108 		    case 1: temp = -cos(x)+sin(x); break;
109 		    case 2: temp = -cos(x)-sin(x); break;
110 		    case 3: temp =  cos(x)-sin(x); break;
111 		}
112 		b = invsqrtpi*temp/sqrt(x);
113 	    } else {
114 	        a = __ieee754_j0(x);
115 	        b = __ieee754_j1(x);
116 	        for(i=1;i<n;i++){
117 		    temp = b;
118 		    b = b*((double)(i+i)/x) - a; /* avoid underflow */
119 		    a = temp;
120 	        }
121 	    }
122 	} else {
123 	    if(ix<0x3e100000) {	/* x < 2**-29 */
124     /* x is tiny, return the first Taylor expansion of J(n,x)
125      * J(n,x) = 1/n!*(x/2)^n  - ...
126      */
127 		if(n>33)	/* underflow */
128 		    b = zero;
129 		else {
130 		    temp = x*0.5; b = temp;
131 		    for (a=one,i=2;i<=n;i++) {
132 			a *= (double)i;		/* a = n! */
133 			b *= temp;		/* b = (x/2)^n */
134 		    }
135 		    b = b/a;
136 		}
137 	    } else {
138 		/* use backward recurrence */
139 		/* 			x      x^2      x^2
140 		 *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
141 		 *			2n  - 2(n+1) - 2(n+2)
142 		 *
143 		 * 			1      1        1
144 		 *  (for large x)   =  ----  ------   ------   .....
145 		 *			2n   2(n+1)   2(n+2)
146 		 *			-- - ------ - ------ -
147 		 *			 x     x         x
148 		 *
149 		 * Let w = 2n/x and h=2/x, then the above quotient
150 		 * is equal to the continued fraction:
151 		 *		    1
152 		 *	= -----------------------
153 		 *		       1
154 		 *	   w - -----------------
155 		 *			  1
156 		 * 	        w+h - ---------
157 		 *		       w+2h - ...
158 		 *
159 		 * To determine how many terms needed, let
160 		 * Q(0) = w, Q(1) = w(w+h) - 1,
161 		 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
162 		 * When Q(k) > 1e4	good for single
163 		 * When Q(k) > 1e9	good for double
164 		 * When Q(k) > 1e17	good for quadruple
165 		 */
166 	    /* determine k */
167 		double t,v;
168 		double q0,q1,h,tmp; int32_t k,m;
169 		w  = (n+n)/(double)x; h = 2.0/(double)x;
170 		q0 = w;  z = w+h; q1 = w*z - 1.0; k=1;
171 		while(q1<1.0e9) {
172 			k += 1; z += h;
173 			tmp = z*q1 - q0;
174 			q0 = q1;
175 			q1 = tmp;
176 		}
177 		m = n+n;
178 		for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
179 		a = t;
180 		b = one;
181 		/*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
182 		 *  Hence, if n*(log(2n/x)) > ...
183 		 *  single 8.8722839355e+01
184 		 *  double 7.09782712893383973096e+02
185 		 *  long double 1.1356523406294143949491931077970765006170e+04
186 		 *  then recurrent value may overflow and the result is
187 		 *  likely underflow to zero
188 		 */
189 		tmp = n;
190 		v = two/x;
191 		tmp = tmp*__ieee754_log(fabs(v*tmp));
192 		if(tmp<7.09782712893383973096e+02) {
193 	    	    for(i=n-1,di=(double)(i+i);i>0;i--){
194 		        temp = b;
195 			b *= di;
196 			b  = b/x - a;
197 		        a = temp;
198 			di -= two;
199 	     	    }
200 		} else {
201 	    	    for(i=n-1,di=(double)(i+i);i>0;i--){
202 		        temp = b;
203 			b *= di;
204 			b  = b/x - a;
205 		        a = temp;
206 			di -= two;
207 		    /* scale b to avoid spurious overflow */
208 			if(b>1e100) {
209 			    a /= b;
210 			    t /= b;
211 			    b  = one;
212 			}
213 	     	    }
214 		}
215 	    	b = (t*__ieee754_j0(x)/b);
216 	    }
217 	}
218 	if(sgn==1) return -b; else return b;
219 }
220 
221 #ifdef __STDC__
222 	double __ieee754_yn(int n, double x)
223 #else
224 	double __ieee754_yn(n,x)
225 	int n; double x;
226 #endif
227 {
228 	int32_t i,hx,ix,lx;
229 	int32_t sign;
230 	double a, b, temp;
231 
232 	EXTRACT_WORDS(hx,lx,x);
233 	ix = 0x7fffffff&hx;
234     /* if Y(n,NaN) is NaN */
235 	if((ix|((u_int32_t)(lx|-lx))>>31)>0x7ff00000) return x+x;
236 	if((ix|lx)==0) return -one/zero;
237 	if(hx<0) return zero/zero;
238 	sign = 1;
239 	if(n<0){
240 		n = -n;
241 		sign = 1 - ((n&1)<<1);
242 	}
243 	if(n==0) return(__ieee754_y0(x));
244 	if(n==1) return(sign*__ieee754_y1(x));
245 	if(ix==0x7ff00000) return zero;
246 	if(ix>=0x52D00000) { /* x > 2**302 */
247     /* (x >> n**2)
248      *	    Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
249      *	    Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
250      *	    Let s=sin(x), c=cos(x),
251      *		xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
252      *
253      *		   n	sin(xn)*sqt2	cos(xn)*sqt2
254      *		----------------------------------
255      *		   0	 s-c		 c+s
256      *		   1	-s-c 		-c+s
257      *		   2	-s+c		-c-s
258      *		   3	 s+c		 c-s
259      */
260 		switch(n&3) {
261 		    case 0: temp =  sin(x)-cos(x); break;
262 		    case 1: temp = -sin(x)-cos(x); break;
263 		    case 2: temp = -sin(x)+cos(x); break;
264 		    case 3: temp =  sin(x)+cos(x); break;
265 		}
266 		b = invsqrtpi*temp/sqrt(x);
267 	} else {
268 	    u_int32_t high;
269 	    a = __ieee754_y0(x);
270 	    b = __ieee754_y1(x);
271 	/* quit if b is -inf */
272 	    GET_HIGH_WORD(high,b);
273 	    for(i=1;i<n&&high!=0xfff00000;i++){
274 		temp = b;
275 		b = ((double)(i+i)/x)*b - a;
276 		GET_HIGH_WORD(high,b);
277 		a = temp;
278 	    }
279 	}
280 	if(sign>0) return b; else return -b;
281 }
282