xref: /freebsd/lib/msun/src/e_jn.c (revision 1669d8afc64812c8d2d1d147ae1fd42ff441e1b1)
1 
2 /* @(#)e_jn.c 1.4 95/01/18 */
3 /*
4  * ====================================================
5  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6  *
7  * Developed at SunSoft, a Sun Microsystems, Inc. business.
8  * Permission to use, copy, modify, and distribute this
9  * software is freely granted, provided that this notice
10  * is preserved.
11  * ====================================================
12  */
13 
14 #ifndef lint
15 static char rcsid[] = "$FreeBSD$";
16 #endif
17 
18 /*
19  * __ieee754_jn(n, x), __ieee754_yn(n, x)
20  * floating point Bessel's function of the 1st and 2nd kind
21  * of order n
22  *
23  * Special cases:
24  *	y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
25  *	y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
26  * Note 2. About jn(n,x), yn(n,x)
27  *	For n=0, j0(x) is called,
28  *	for n=1, j1(x) is called,
29  *	for n<x, forward recursion us used starting
30  *	from values of j0(x) and j1(x).
31  *	for n>x, a continued fraction approximation to
32  *	j(n,x)/j(n-1,x) is evaluated and then backward
33  *	recursion is used starting from a supposed value
34  *	for j(n,x). The resulting value of j(0,x) is
35  *	compared with the actual value to correct the
36  *	supposed value of j(n,x).
37  *
38  *	yn(n,x) is similar in all respects, except
39  *	that forward recursion is used for all
40  *	values of n>1.
41  *
42  */
43 
44 #include "math.h"
45 #include "math_private.h"
46 
47 static const double
48 invsqrtpi=  5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
49 two   =  2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */
50 one   =  1.00000000000000000000e+00; /* 0x3FF00000, 0x00000000 */
51 
52 static const double zero  =  0.00000000000000000000e+00;
53 
54 double
55 __ieee754_jn(int n, double x)
56 {
57 	int32_t i,hx,ix,lx, sgn;
58 	double a, b, temp, di;
59 	double z, w;
60 
61     /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
62      * Thus, J(-n,x) = J(n,-x)
63      */
64 	EXTRACT_WORDS(hx,lx,x);
65 	ix = 0x7fffffff&hx;
66     /* if J(n,NaN) is NaN */
67 	if((ix|((u_int32_t)(lx|-lx))>>31)>0x7ff00000) return x+x;
68 	if(n<0){
69 		n = -n;
70 		x = -x;
71 		hx ^= 0x80000000;
72 	}
73 	if(n==0) return(__ieee754_j0(x));
74 	if(n==1) return(__ieee754_j1(x));
75 	sgn = (n&1)&(hx>>31);	/* even n -- 0, odd n -- sign(x) */
76 	x = fabs(x);
77 	if((ix|lx)==0||ix>=0x7ff00000) 	/* if x is 0 or inf */
78 	    b = zero;
79 	else if((double)n<=x) {
80 		/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
81 	    if(ix>=0x52D00000) { /* x > 2**302 */
82     /* (x >> n**2)
83      *	    Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
84      *	    Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
85      *	    Let s=sin(x), c=cos(x),
86      *		xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
87      *
88      *		   n	sin(xn)*sqt2	cos(xn)*sqt2
89      *		----------------------------------
90      *		   0	 s-c		 c+s
91      *		   1	-s-c 		-c+s
92      *		   2	-s+c		-c-s
93      *		   3	 s+c		 c-s
94      */
95 		switch(n&3) {
96 		    case 0: temp =  cos(x)+sin(x); break;
97 		    case 1: temp = -cos(x)+sin(x); break;
98 		    case 2: temp = -cos(x)-sin(x); break;
99 		    case 3: temp =  cos(x)-sin(x); break;
100 		}
101 		b = invsqrtpi*temp/sqrt(x);
102 	    } else {
103 	        a = __ieee754_j0(x);
104 	        b = __ieee754_j1(x);
105 	        for(i=1;i<n;i++){
106 		    temp = b;
107 		    b = b*((double)(i+i)/x) - a; /* avoid underflow */
108 		    a = temp;
109 	        }
110 	    }
111 	} else {
112 	    if(ix<0x3e100000) {	/* x < 2**-29 */
113     /* x is tiny, return the first Taylor expansion of J(n,x)
114      * J(n,x) = 1/n!*(x/2)^n  - ...
115      */
116 		if(n>33)	/* underflow */
117 		    b = zero;
118 		else {
119 		    temp = x*0.5; b = temp;
120 		    for (a=one,i=2;i<=n;i++) {
121 			a *= (double)i;		/* a = n! */
122 			b *= temp;		/* b = (x/2)^n */
123 		    }
124 		    b = b/a;
125 		}
126 	    } else {
127 		/* use backward recurrence */
128 		/* 			x      x^2      x^2
129 		 *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
130 		 *			2n  - 2(n+1) - 2(n+2)
131 		 *
132 		 * 			1      1        1
133 		 *  (for large x)   =  ----  ------   ------   .....
134 		 *			2n   2(n+1)   2(n+2)
135 		 *			-- - ------ - ------ -
136 		 *			 x     x         x
137 		 *
138 		 * Let w = 2n/x and h=2/x, then the above quotient
139 		 * is equal to the continued fraction:
140 		 *		    1
141 		 *	= -----------------------
142 		 *		       1
143 		 *	   w - -----------------
144 		 *			  1
145 		 * 	        w+h - ---------
146 		 *		       w+2h - ...
147 		 *
148 		 * To determine how many terms needed, let
149 		 * Q(0) = w, Q(1) = w(w+h) - 1,
150 		 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
151 		 * When Q(k) > 1e4	good for single
152 		 * When Q(k) > 1e9	good for double
153 		 * When Q(k) > 1e17	good for quadruple
154 		 */
155 	    /* determine k */
156 		double t,v;
157 		double q0,q1,h,tmp; int32_t k,m;
158 		w  = (n+n)/(double)x; h = 2.0/(double)x;
159 		q0 = w;  z = w+h; q1 = w*z - 1.0; k=1;
160 		while(q1<1.0e9) {
161 			k += 1; z += h;
162 			tmp = z*q1 - q0;
163 			q0 = q1;
164 			q1 = tmp;
165 		}
166 		m = n+n;
167 		for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
168 		a = t;
169 		b = one;
170 		/*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
171 		 *  Hence, if n*(log(2n/x)) > ...
172 		 *  single 8.8722839355e+01
173 		 *  double 7.09782712893383973096e+02
174 		 *  long double 1.1356523406294143949491931077970765006170e+04
175 		 *  then recurrent value may overflow and the result is
176 		 *  likely underflow to zero
177 		 */
178 		tmp = n;
179 		v = two/x;
180 		tmp = tmp*__ieee754_log(fabs(v*tmp));
181 		if(tmp<7.09782712893383973096e+02) {
182 	    	    for(i=n-1,di=(double)(i+i);i>0;i--){
183 		        temp = b;
184 			b *= di;
185 			b  = b/x - a;
186 		        a = temp;
187 			di -= two;
188 	     	    }
189 		} else {
190 	    	    for(i=n-1,di=(double)(i+i);i>0;i--){
191 		        temp = b;
192 			b *= di;
193 			b  = b/x - a;
194 		        a = temp;
195 			di -= two;
196 		    /* scale b to avoid spurious overflow */
197 			if(b>1e100) {
198 			    a /= b;
199 			    t /= b;
200 			    b  = one;
201 			}
202 	     	    }
203 		}
204 	    	b = (t*__ieee754_j0(x)/b);
205 	    }
206 	}
207 	if(sgn==1) return -b; else return b;
208 }
209 
210 double
211 __ieee754_yn(int n, double x)
212 {
213 	int32_t i,hx,ix,lx;
214 	int32_t sign;
215 	double a, b, temp;
216 
217 	EXTRACT_WORDS(hx,lx,x);
218 	ix = 0x7fffffff&hx;
219     /* if Y(n,NaN) is NaN */
220 	if((ix|((u_int32_t)(lx|-lx))>>31)>0x7ff00000) return x+x;
221 	if((ix|lx)==0) return -one/zero;
222 	if(hx<0) return zero/zero;
223 	sign = 1;
224 	if(n<0){
225 		n = -n;
226 		sign = 1 - ((n&1)<<1);
227 	}
228 	if(n==0) return(__ieee754_y0(x));
229 	if(n==1) return(sign*__ieee754_y1(x));
230 	if(ix==0x7ff00000) return zero;
231 	if(ix>=0x52D00000) { /* x > 2**302 */
232     /* (x >> n**2)
233      *	    Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
234      *	    Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
235      *	    Let s=sin(x), c=cos(x),
236      *		xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
237      *
238      *		   n	sin(xn)*sqt2	cos(xn)*sqt2
239      *		----------------------------------
240      *		   0	 s-c		 c+s
241      *		   1	-s-c 		-c+s
242      *		   2	-s+c		-c-s
243      *		   3	 s+c		 c-s
244      */
245 		switch(n&3) {
246 		    case 0: temp =  sin(x)-cos(x); break;
247 		    case 1: temp = -sin(x)-cos(x); break;
248 		    case 2: temp = -sin(x)+cos(x); break;
249 		    case 3: temp =  sin(x)+cos(x); break;
250 		}
251 		b = invsqrtpi*temp/sqrt(x);
252 	} else {
253 	    u_int32_t high;
254 	    a = __ieee754_y0(x);
255 	    b = __ieee754_y1(x);
256 	/* quit if b is -inf */
257 	    GET_HIGH_WORD(high,b);
258 	    for(i=1;i<n&&high!=0xfff00000;i++){
259 		temp = b;
260 		b = ((double)(i+i)/x)*b - a;
261 		GET_HIGH_WORD(high,b);
262 		a = temp;
263 	    }
264 	}
265 	if(sign>0) return b; else return -b;
266 }
267