xref: /freebsd/lib/msun/src/e_j1f.c (revision ae477ca7da55f76d28859e1bd01cd1051e36f28f)
1 /* e_j1f.c -- float version of e_j1.c.
2  * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
3  */
4 
5 /*
6  * ====================================================
7  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
8  *
9  * Developed at SunPro, a Sun Microsystems, Inc. business.
10  * Permission to use, copy, modify, and distribute this
11  * software is freely granted, provided that this notice
12  * is preserved.
13  * ====================================================
14  */
15 
16 #include <sys/cdefs.h>
17 /*
18  * See e_j1.c for complete comments.
19  */
20 
21 #include "math.h"
22 #include "math_private.h"
23 
24 static __inline float ponef(float), qonef(float);
25 
26 static const volatile float vone = 1, vzero = 0;
27 
28 static const float
29 huge    = 1e30,
30 one	= 1.0,
31 invsqrtpi=  5.6418961287e-01, /* 0x3f106ebb */
32 tpi      =  6.3661974669e-01, /* 0x3f22f983 */
33 /* R0/S0 on [0,2] */
34 r00  = -6.2500000000e-02, /* 0xbd800000 */
35 r01  =  1.4070566976e-03, /* 0x3ab86cfd */
36 r02  = -1.5995563444e-05, /* 0xb7862e36 */
37 r03  =  4.9672799207e-08, /* 0x335557d2 */
38 s01  =  1.9153760746e-02, /* 0x3c9ce859 */
39 s02  =  1.8594678841e-04, /* 0x3942fab6 */
40 s03  =  1.1771846857e-06, /* 0x359dffc2 */
41 s04  =  5.0463624390e-09, /* 0x31ad6446 */
42 s05  =  1.2354227016e-11; /* 0x2d59567e */
43 
44 static const float zero    = 0.0;
45 
46 float
47 j1f(float x)
48 {
49 	float z, s,c,ss,cc,r,u,v,y;
50 	int32_t hx,ix;
51 
52 	GET_FLOAT_WORD(hx,x);
53 	ix = hx&0x7fffffff;
54 	if(ix>=0x7f800000) return one/x;
55 	y = fabsf(x);
56 	if(ix >= 0x40000000) {	/* |x| >= 2.0 */
57 		sincosf(y, &s, &c);
58 		ss = -s-c;
59 		cc = s-c;
60 		if(ix<0x7f000000) {  /* make sure y+y not overflow */
61 		    z = cosf(y+y);
62 		    if ((s*c)>zero) cc = z/ss;
63 		    else 	    ss = z/cc;
64 		}
65 	/*
66 	 * j1(x) = 1/sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / sqrt(x)
67 	 * y1(x) = 1/sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / sqrt(x)
68 	 */
69 		if(ix>0x58000000) z = (invsqrtpi*cc)/sqrtf(y); /* |x|>2**49 */
70 		else {
71 		    u = ponef(y); v = qonef(y);
72 		    z = invsqrtpi*(u*cc-v*ss)/sqrtf(y);
73 		}
74 		if(hx<0) return -z;
75 		else  	 return  z;
76 	}
77 	if(ix<0x39000000) {	/* |x|<2**-13 */
78 	    if(huge+x>one) return (float)0.5*x;/* inexact if x!=0 necessary */
79 	}
80 	z = x*x;
81 	r =  z*(r00+z*(r01+z*(r02+z*r03)));
82 	s =  one+z*(s01+z*(s02+z*(s03+z*(s04+z*s05))));
83 	r *= x;
84 	return(x*(float)0.5+r/s);
85 }
86 
87 static const float U0[5] = {
88  -1.9605709612e-01, /* 0xbe48c331 */
89   5.0443872809e-02, /* 0x3d4e9e3c */
90  -1.9125689287e-03, /* 0xbafaaf2a */
91   2.3525259166e-05, /* 0x37c5581c */
92  -9.1909917899e-08, /* 0xb3c56003 */
93 };
94 static const float V0[5] = {
95   1.9916731864e-02, /* 0x3ca3286a */
96   2.0255257550e-04, /* 0x3954644b */
97   1.3560879779e-06, /* 0x35b602d4 */
98   6.2274145840e-09, /* 0x31d5f8eb */
99   1.6655924903e-11, /* 0x2d9281cf */
100 };
101 
102 float
103 y1f(float x)
104 {
105 	float z, s,c,ss,cc,u,v;
106 	int32_t hx,ix;
107 
108 	GET_FLOAT_WORD(hx,x);
109         ix = 0x7fffffff&hx;
110 	if(ix>=0x7f800000) return  vone/(x+x*x);
111 	if(ix==0) return -one/vzero;
112 	if(hx<0) return vzero/vzero;
113         if(ix >= 0x40000000) {  /* |x| >= 2.0 */
114                 sincosf(x, &s, &c);
115                 ss = -s-c;
116                 cc = s-c;
117                 if(ix<0x7f000000) {  /* make sure x+x not overflow */
118                     z = cosf(x+x);
119                     if ((s*c)>zero) cc = z/ss;
120                     else            ss = z/cc;
121                 }
122         /* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0))
123          * where x0 = x-3pi/4
124          *      Better formula:
125          *              cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
126          *                      =  1/sqrt(2) * (sin(x) - cos(x))
127          *              sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
128          *                      = -1/sqrt(2) * (cos(x) + sin(x))
129          * To avoid cancellation, use
130          *              sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
131          * to compute the worse one.
132          */
133                 if(ix>0x58000000) z = (invsqrtpi*ss)/sqrtf(x); /* |x|>2**49 */
134                 else {
135                     u = ponef(x); v = qonef(x);
136                     z = invsqrtpi*(u*ss+v*cc)/sqrtf(x);
137                 }
138                 return z;
139         }
140         if(ix<=0x33000000) {    /* x < 2**-25 */
141             return(-tpi/x);
142         }
143         z = x*x;
144         u = U0[0]+z*(U0[1]+z*(U0[2]+z*(U0[3]+z*U0[4])));
145         v = one+z*(V0[0]+z*(V0[1]+z*(V0[2]+z*(V0[3]+z*V0[4]))));
146         return(x*(u/v) + tpi*(j1f(x)*logf(x)-one/x));
147 }
148 
149 /* For x >= 8, the asymptotic expansions of pone is
150  *	1 + 15/128 s^2 - 4725/2^15 s^4 - ...,	where s = 1/x.
151  * We approximate pone by
152  * 	pone(x) = 1 + (R/S)
153  * where  R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10
154  * 	  S = 1 + ps0*s^2 + ... + ps4*s^10
155  * and
156  *	| pone(x)-1-R/S | <= 2  ** ( -60.06)
157  */
158 
159 static const float pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
160   0.0000000000e+00, /* 0x00000000 */
161   1.1718750000e-01, /* 0x3df00000 */
162   1.3239480972e+01, /* 0x4153d4ea */
163   4.1205184937e+02, /* 0x43ce06a3 */
164   3.8747453613e+03, /* 0x45722bed */
165   7.9144794922e+03, /* 0x45f753d6 */
166 };
167 static const float ps8[5] = {
168   1.1420736694e+02, /* 0x42e46a2c */
169   3.6509309082e+03, /* 0x45642ee5 */
170   3.6956207031e+04, /* 0x47105c35 */
171   9.7602796875e+04, /* 0x47bea166 */
172   3.0804271484e+04, /* 0x46f0a88b */
173 };
174 
175 static const float pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
176   1.3199052094e-11, /* 0x2d68333f */
177   1.1718749255e-01, /* 0x3defffff */
178   6.8027510643e+00, /* 0x40d9b023 */
179   1.0830818176e+02, /* 0x42d89dca */
180   5.1763616943e+02, /* 0x440168b7 */
181   5.2871520996e+02, /* 0x44042dc6 */
182 };
183 static const float ps5[5] = {
184   5.9280597687e+01, /* 0x426d1f55 */
185   9.9140142822e+02, /* 0x4477d9b1 */
186   5.3532670898e+03, /* 0x45a74a23 */
187   7.8446904297e+03, /* 0x45f52586 */
188   1.5040468750e+03, /* 0x44bc0180 */
189 };
190 
191 static const float pr3[6] = {
192   3.0250391081e-09, /* 0x314fe10d */
193   1.1718686670e-01, /* 0x3defffab */
194   3.9329774380e+00, /* 0x407bb5e7 */
195   3.5119403839e+01, /* 0x420c7a45 */
196   9.1055007935e+01, /* 0x42b61c2a */
197   4.8559066772e+01, /* 0x42423c7c */
198 };
199 static const float ps3[5] = {
200   3.4791309357e+01, /* 0x420b2a4d */
201   3.3676245117e+02, /* 0x43a86198 */
202   1.0468714600e+03, /* 0x4482dbe3 */
203   8.9081134033e+02, /* 0x445eb3ed */
204   1.0378793335e+02, /* 0x42cf936c */
205 };
206 
207 static const float pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
208   1.0771083225e-07, /* 0x33e74ea8 */
209   1.1717621982e-01, /* 0x3deffa16 */
210   2.3685150146e+00, /* 0x401795c0 */
211   1.2242610931e+01, /* 0x4143e1bc */
212   1.7693971634e+01, /* 0x418d8d41 */
213   5.0735230446e+00, /* 0x40a25a4d */
214 };
215 static const float ps2[5] = {
216   2.1436485291e+01, /* 0x41ab7dec */
217   1.2529022980e+02, /* 0x42fa9499 */
218   2.3227647400e+02, /* 0x436846c7 */
219   1.1767937469e+02, /* 0x42eb5bd7 */
220   8.3646392822e+00, /* 0x4105d590 */
221 };
222 
223 static __inline float
224 ponef(float x)
225 {
226 	const float *p,*q;
227 	float z,r,s;
228         int32_t ix;
229 	GET_FLOAT_WORD(ix,x);
230 	ix &= 0x7fffffff;
231         if(ix>=0x41000000)     {p = pr8; q= ps8;}
232         else if(ix>=0x409173eb){p = pr5; q= ps5;}
233         else if(ix>=0x4036d917){p = pr3; q= ps3;}
234 	else                   {p = pr2; q= ps2;}	/* ix>=0x40000000 */
235         z = one/(x*x);
236         r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
237         s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
238         return one+ r/s;
239 }
240 
241 
242 /* For x >= 8, the asymptotic expansions of qone is
243  *	3/8 s - 105/1024 s^3 - ..., where s = 1/x.
244  * We approximate pone by
245  * 	qone(x) = s*(0.375 + (R/S))
246  * where  R = qr1*s^2 + qr2*s^4 + ... + qr5*s^10
247  * 	  S = 1 + qs1*s^2 + ... + qs6*s^12
248  * and
249  *	| qone(x)/s -0.375-R/S | <= 2  ** ( -61.13)
250  */
251 
252 static const float qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
253   0.0000000000e+00, /* 0x00000000 */
254  -1.0253906250e-01, /* 0xbdd20000 */
255  -1.6271753311e+01, /* 0xc1822c8d */
256  -7.5960174561e+02, /* 0xc43de683 */
257  -1.1849806641e+04, /* 0xc639273a */
258  -4.8438511719e+04, /* 0xc73d3683 */
259 };
260 static const float qs8[6] = {
261   1.6139537048e+02, /* 0x43216537 */
262   7.8253862305e+03, /* 0x45f48b17 */
263   1.3387534375e+05, /* 0x4802bcd6 */
264   7.1965775000e+05, /* 0x492fb29c */
265   6.6660125000e+05, /* 0x4922be94 */
266  -2.9449025000e+05, /* 0xc88fcb48 */
267 };
268 
269 static const float qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
270  -2.0897993405e-11, /* 0xadb7d219 */
271  -1.0253904760e-01, /* 0xbdd1fffe */
272  -8.0564479828e+00, /* 0xc100e736 */
273  -1.8366960144e+02, /* 0xc337ab6b */
274  -1.3731937256e+03, /* 0xc4aba633 */
275  -2.6124443359e+03, /* 0xc523471c */
276 };
277 static const float qs5[6] = {
278   8.1276550293e+01, /* 0x42a28d98 */
279   1.9917987061e+03, /* 0x44f8f98f */
280   1.7468484375e+04, /* 0x468878f8 */
281   4.9851425781e+04, /* 0x4742bb6d */
282   2.7948074219e+04, /* 0x46da5826 */
283  -4.7191835938e+03, /* 0xc5937978 */
284 };
285 
286 static const float qr3[6] = {
287  -5.0783124372e-09, /* 0xb1ae7d4f */
288  -1.0253783315e-01, /* 0xbdd1ff5b */
289  -4.6101160049e+00, /* 0xc0938612 */
290  -5.7847221375e+01, /* 0xc267638e */
291  -2.2824453735e+02, /* 0xc3643e9a */
292  -2.1921012878e+02, /* 0xc35b35cb */
293 };
294 static const float qs3[6] = {
295   4.7665153503e+01, /* 0x423ea91e */
296   6.7386511230e+02, /* 0x4428775e */
297   3.3801528320e+03, /* 0x45534272 */
298   5.5477290039e+03, /* 0x45ad5dd5 */
299   1.9031191406e+03, /* 0x44ede3d0 */
300  -1.3520118713e+02, /* 0xc3073381 */
301 };
302 
303 static const float qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
304  -1.7838172539e-07, /* 0xb43f8932 */
305  -1.0251704603e-01, /* 0xbdd1f475 */
306  -2.7522056103e+00, /* 0xc0302423 */
307  -1.9663616180e+01, /* 0xc19d4f16 */
308  -4.2325313568e+01, /* 0xc2294d1f */
309  -2.1371921539e+01, /* 0xc1aaf9b2 */
310 };
311 static const float qs2[6] = {
312   2.9533363342e+01, /* 0x41ec4454 */
313   2.5298155212e+02, /* 0x437cfb47 */
314   7.5750280762e+02, /* 0x443d602e */
315   7.3939318848e+02, /* 0x4438d92a */
316   1.5594900513e+02, /* 0x431bf2f2 */
317  -4.9594988823e+00, /* 0xc09eb437 */
318 };
319 
320 static __inline float
321 qonef(float x)
322 {
323 	const float *p,*q;
324 	float  s,r,z;
325 	int32_t ix;
326 	GET_FLOAT_WORD(ix,x);
327 	ix &= 0x7fffffff;
328 	if(ix>=0x41000000)     {p = qr8; q= qs8;}
329 	else if(ix>=0x409173eb){p = qr5; q= qs5;}
330 	else if(ix>=0x4036d917){p = qr3; q= qs3;}
331 	else                   {p = qr2; q= qs2;}	/* ix>=0x40000000 */
332 	z = one/(x*x);
333 	r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
334 	s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
335 	return ((float).375 + r/s)/x;
336 }
337