xref: /freebsd/lib/msun/src/e_j1f.c (revision 78b9f0095b4af3aca6c931b2c7b009ddb8a05125)
1 /* e_j1f.c -- float version of e_j1.c.
2  * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
3  */
4 
5 /*
6  * ====================================================
7  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
8  *
9  * Developed at SunPro, a Sun Microsystems, Inc. business.
10  * Permission to use, copy, modify, and distribute this
11  * software is freely granted, provided that this notice
12  * is preserved.
13  * ====================================================
14  */
15 
16 #include <sys/cdefs.h>
17 __FBSDID("$FreeBSD$");
18 
19 /*
20  * See e_j1.c for complete comments.
21  */
22 
23 #include "math.h"
24 #include "math_private.h"
25 
26 static __inline float ponef(float), qonef(float);
27 
28 static const volatile float vone = 1, vzero = 0;
29 
30 static const float
31 huge    = 1e30,
32 one	= 1.0,
33 invsqrtpi=  5.6418961287e-01, /* 0x3f106ebb */
34 tpi      =  6.3661974669e-01, /* 0x3f22f983 */
35 /* R0/S0 on [0,2] */
36 r00  = -6.2500000000e-02, /* 0xbd800000 */
37 r01  =  1.4070566976e-03, /* 0x3ab86cfd */
38 r02  = -1.5995563444e-05, /* 0xb7862e36 */
39 r03  =  4.9672799207e-08, /* 0x335557d2 */
40 s01  =  1.9153760746e-02, /* 0x3c9ce859 */
41 s02  =  1.8594678841e-04, /* 0x3942fab6 */
42 s03  =  1.1771846857e-06, /* 0x359dffc2 */
43 s04  =  5.0463624390e-09, /* 0x31ad6446 */
44 s05  =  1.2354227016e-11; /* 0x2d59567e */
45 
46 static const float zero    = 0.0;
47 
48 float
49 __ieee754_j1f(float x)
50 {
51 	float z, s,c,ss,cc,r,u,v,y;
52 	int32_t hx,ix;
53 
54 	GET_FLOAT_WORD(hx,x);
55 	ix = hx&0x7fffffff;
56 	if(ix>=0x7f800000) return one/x;
57 	y = fabsf(x);
58 	if(ix >= 0x40000000) {	/* |x| >= 2.0 */
59 		s = sinf(y);
60 		c = cosf(y);
61 		ss = -s-c;
62 		cc = s-c;
63 		if(ix<0x7f000000) {  /* make sure y+y not overflow */
64 		    z = cosf(y+y);
65 		    if ((s*c)>zero) cc = z/ss;
66 		    else 	    ss = z/cc;
67 		}
68 	/*
69 	 * j1(x) = 1/sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / sqrt(x)
70 	 * y1(x) = 1/sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / sqrt(x)
71 	 */
72 		if(ix>0x58000000) z = (invsqrtpi*cc)/sqrtf(y); /* |x|>2**49 */
73 		else {
74 		    u = ponef(y); v = qonef(y);
75 		    z = invsqrtpi*(u*cc-v*ss)/sqrtf(y);
76 		}
77 		if(hx<0) return -z;
78 		else  	 return  z;
79 	}
80 	if(ix<0x39000000) {	/* |x|<2**-13 */
81 	    if(huge+x>one) return (float)0.5*x;/* inexact if x!=0 necessary */
82 	}
83 	z = x*x;
84 	r =  z*(r00+z*(r01+z*(r02+z*r03)));
85 	s =  one+z*(s01+z*(s02+z*(s03+z*(s04+z*s05))));
86 	r *= x;
87 	return(x*(float)0.5+r/s);
88 }
89 
90 static const float U0[5] = {
91  -1.9605709612e-01, /* 0xbe48c331 */
92   5.0443872809e-02, /* 0x3d4e9e3c */
93  -1.9125689287e-03, /* 0xbafaaf2a */
94   2.3525259166e-05, /* 0x37c5581c */
95  -9.1909917899e-08, /* 0xb3c56003 */
96 };
97 static const float V0[5] = {
98   1.9916731864e-02, /* 0x3ca3286a */
99   2.0255257550e-04, /* 0x3954644b */
100   1.3560879779e-06, /* 0x35b602d4 */
101   6.2274145840e-09, /* 0x31d5f8eb */
102   1.6655924903e-11, /* 0x2d9281cf */
103 };
104 
105 float
106 __ieee754_y1f(float x)
107 {
108 	float z, s,c,ss,cc,u,v;
109 	int32_t hx,ix;
110 
111 	GET_FLOAT_WORD(hx,x);
112         ix = 0x7fffffff&hx;
113 	if(ix>=0x7f800000) return  vone/(x+x*x);
114 	if(ix==0) return -one/vzero;
115 	if(hx<0) return vzero/vzero;
116         if(ix >= 0x40000000) {  /* |x| >= 2.0 */
117                 s = sinf(x);
118                 c = cosf(x);
119                 ss = -s-c;
120                 cc = s-c;
121                 if(ix<0x7f000000) {  /* make sure x+x not overflow */
122                     z = cosf(x+x);
123                     if ((s*c)>zero) cc = z/ss;
124                     else            ss = z/cc;
125                 }
126         /* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0))
127          * where x0 = x-3pi/4
128          *      Better formula:
129          *              cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
130          *                      =  1/sqrt(2) * (sin(x) - cos(x))
131          *              sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
132          *                      = -1/sqrt(2) * (cos(x) + sin(x))
133          * To avoid cancellation, use
134          *              sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
135          * to compute the worse one.
136          */
137                 if(ix>0x58000000) z = (invsqrtpi*ss)/sqrtf(x); /* |x|>2**49 */
138                 else {
139                     u = ponef(x); v = qonef(x);
140                     z = invsqrtpi*(u*ss+v*cc)/sqrtf(x);
141                 }
142                 return z;
143         }
144         if(ix<=0x33000000) {    /* x < 2**-25 */
145             return(-tpi/x);
146         }
147         z = x*x;
148         u = U0[0]+z*(U0[1]+z*(U0[2]+z*(U0[3]+z*U0[4])));
149         v = one+z*(V0[0]+z*(V0[1]+z*(V0[2]+z*(V0[3]+z*V0[4]))));
150         return(x*(u/v) + tpi*(__ieee754_j1f(x)*__ieee754_logf(x)-one/x));
151 }
152 
153 /* For x >= 8, the asymptotic expansions of pone is
154  *	1 + 15/128 s^2 - 4725/2^15 s^4 - ...,	where s = 1/x.
155  * We approximate pone by
156  * 	pone(x) = 1 + (R/S)
157  * where  R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10
158  * 	  S = 1 + ps0*s^2 + ... + ps4*s^10
159  * and
160  *	| pone(x)-1-R/S | <= 2  ** ( -60.06)
161  */
162 
163 static const float pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
164   0.0000000000e+00, /* 0x00000000 */
165   1.1718750000e-01, /* 0x3df00000 */
166   1.3239480972e+01, /* 0x4153d4ea */
167   4.1205184937e+02, /* 0x43ce06a3 */
168   3.8747453613e+03, /* 0x45722bed */
169   7.9144794922e+03, /* 0x45f753d6 */
170 };
171 static const float ps8[5] = {
172   1.1420736694e+02, /* 0x42e46a2c */
173   3.6509309082e+03, /* 0x45642ee5 */
174   3.6956207031e+04, /* 0x47105c35 */
175   9.7602796875e+04, /* 0x47bea166 */
176   3.0804271484e+04, /* 0x46f0a88b */
177 };
178 
179 static const float pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
180   1.3199052094e-11, /* 0x2d68333f */
181   1.1718749255e-01, /* 0x3defffff */
182   6.8027510643e+00, /* 0x40d9b023 */
183   1.0830818176e+02, /* 0x42d89dca */
184   5.1763616943e+02, /* 0x440168b7 */
185   5.2871520996e+02, /* 0x44042dc6 */
186 };
187 static const float ps5[5] = {
188   5.9280597687e+01, /* 0x426d1f55 */
189   9.9140142822e+02, /* 0x4477d9b1 */
190   5.3532670898e+03, /* 0x45a74a23 */
191   7.8446904297e+03, /* 0x45f52586 */
192   1.5040468750e+03, /* 0x44bc0180 */
193 };
194 
195 static const float pr3[6] = {
196   3.0250391081e-09, /* 0x314fe10d */
197   1.1718686670e-01, /* 0x3defffab */
198   3.9329774380e+00, /* 0x407bb5e7 */
199   3.5119403839e+01, /* 0x420c7a45 */
200   9.1055007935e+01, /* 0x42b61c2a */
201   4.8559066772e+01, /* 0x42423c7c */
202 };
203 static const float ps3[5] = {
204   3.4791309357e+01, /* 0x420b2a4d */
205   3.3676245117e+02, /* 0x43a86198 */
206   1.0468714600e+03, /* 0x4482dbe3 */
207   8.9081134033e+02, /* 0x445eb3ed */
208   1.0378793335e+02, /* 0x42cf936c */
209 };
210 
211 static const float pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
212   1.0771083225e-07, /* 0x33e74ea8 */
213   1.1717621982e-01, /* 0x3deffa16 */
214   2.3685150146e+00, /* 0x401795c0 */
215   1.2242610931e+01, /* 0x4143e1bc */
216   1.7693971634e+01, /* 0x418d8d41 */
217   5.0735230446e+00, /* 0x40a25a4d */
218 };
219 static const float ps2[5] = {
220   2.1436485291e+01, /* 0x41ab7dec */
221   1.2529022980e+02, /* 0x42fa9499 */
222   2.3227647400e+02, /* 0x436846c7 */
223   1.1767937469e+02, /* 0x42eb5bd7 */
224   8.3646392822e+00, /* 0x4105d590 */
225 };
226 
227 static __inline float
228 ponef(float x)
229 {
230 	const float *p,*q;
231 	float z,r,s;
232         int32_t ix;
233 	GET_FLOAT_WORD(ix,x);
234 	ix &= 0x7fffffff;
235         if(ix>=0x41000000)     {p = pr8; q= ps8;}
236         else if(ix>=0x409173eb){p = pr5; q= ps5;}
237         else if(ix>=0x4036d917){p = pr3; q= ps3;}
238 	else                   {p = pr2; q= ps2;}	/* ix>=0x40000000 */
239         z = one/(x*x);
240         r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
241         s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
242         return one+ r/s;
243 }
244 
245 
246 /* For x >= 8, the asymptotic expansions of qone is
247  *	3/8 s - 105/1024 s^3 - ..., where s = 1/x.
248  * We approximate pone by
249  * 	qone(x) = s*(0.375 + (R/S))
250  * where  R = qr1*s^2 + qr2*s^4 + ... + qr5*s^10
251  * 	  S = 1 + qs1*s^2 + ... + qs6*s^12
252  * and
253  *	| qone(x)/s -0.375-R/S | <= 2  ** ( -61.13)
254  */
255 
256 static const float qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
257   0.0000000000e+00, /* 0x00000000 */
258  -1.0253906250e-01, /* 0xbdd20000 */
259  -1.6271753311e+01, /* 0xc1822c8d */
260  -7.5960174561e+02, /* 0xc43de683 */
261  -1.1849806641e+04, /* 0xc639273a */
262  -4.8438511719e+04, /* 0xc73d3683 */
263 };
264 static const float qs8[6] = {
265   1.6139537048e+02, /* 0x43216537 */
266   7.8253862305e+03, /* 0x45f48b17 */
267   1.3387534375e+05, /* 0x4802bcd6 */
268   7.1965775000e+05, /* 0x492fb29c */
269   6.6660125000e+05, /* 0x4922be94 */
270  -2.9449025000e+05, /* 0xc88fcb48 */
271 };
272 
273 static const float qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
274  -2.0897993405e-11, /* 0xadb7d219 */
275  -1.0253904760e-01, /* 0xbdd1fffe */
276  -8.0564479828e+00, /* 0xc100e736 */
277  -1.8366960144e+02, /* 0xc337ab6b */
278  -1.3731937256e+03, /* 0xc4aba633 */
279  -2.6124443359e+03, /* 0xc523471c */
280 };
281 static const float qs5[6] = {
282   8.1276550293e+01, /* 0x42a28d98 */
283   1.9917987061e+03, /* 0x44f8f98f */
284   1.7468484375e+04, /* 0x468878f8 */
285   4.9851425781e+04, /* 0x4742bb6d */
286   2.7948074219e+04, /* 0x46da5826 */
287  -4.7191835938e+03, /* 0xc5937978 */
288 };
289 
290 static const float qr3[6] = {
291  -5.0783124372e-09, /* 0xb1ae7d4f */
292  -1.0253783315e-01, /* 0xbdd1ff5b */
293  -4.6101160049e+00, /* 0xc0938612 */
294  -5.7847221375e+01, /* 0xc267638e */
295  -2.2824453735e+02, /* 0xc3643e9a */
296  -2.1921012878e+02, /* 0xc35b35cb */
297 };
298 static const float qs3[6] = {
299   4.7665153503e+01, /* 0x423ea91e */
300   6.7386511230e+02, /* 0x4428775e */
301   3.3801528320e+03, /* 0x45534272 */
302   5.5477290039e+03, /* 0x45ad5dd5 */
303   1.9031191406e+03, /* 0x44ede3d0 */
304  -1.3520118713e+02, /* 0xc3073381 */
305 };
306 
307 static const float qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
308  -1.7838172539e-07, /* 0xb43f8932 */
309  -1.0251704603e-01, /* 0xbdd1f475 */
310  -2.7522056103e+00, /* 0xc0302423 */
311  -1.9663616180e+01, /* 0xc19d4f16 */
312  -4.2325313568e+01, /* 0xc2294d1f */
313  -2.1371921539e+01, /* 0xc1aaf9b2 */
314 };
315 static const float qs2[6] = {
316   2.9533363342e+01, /* 0x41ec4454 */
317   2.5298155212e+02, /* 0x437cfb47 */
318   7.5750280762e+02, /* 0x443d602e */
319   7.3939318848e+02, /* 0x4438d92a */
320   1.5594900513e+02, /* 0x431bf2f2 */
321  -4.9594988823e+00, /* 0xc09eb437 */
322 };
323 
324 static __inline float
325 qonef(float x)
326 {
327 	const float *p,*q;
328 	float  s,r,z;
329 	int32_t ix;
330 	GET_FLOAT_WORD(ix,x);
331 	ix &= 0x7fffffff;
332 	if(ix>=0x41000000)     {p = qr8; q= qs8;}
333 	else if(ix>=0x409173eb){p = qr5; q= qs5;}
334 	else if(ix>=0x4036d917){p = qr3; q= qs3;}
335 	else                   {p = qr2; q= qs2;}	/* ix>=0x40000000 */
336 	z = one/(x*x);
337 	r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
338 	s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
339 	return ((float).375 + r/s)/x;
340 }
341